【題目】將一副三角板按如圖所示的方式擺放,其中△ABC為含有45°角的三角板,直線AD是等腰直角三角板的對稱軸,且斜邊上的點D為另一塊三角板DMN的直角頂點,DM、DN分別交AB、AC于點EF.則下列四個結(jié)論:BDADCD;②△AED≌△CFD;③BE+CFEF;④S四邊形AEDFBC2.其中正確結(jié)論是_____(填序號).

【答案】①②

【解析】

根據(jù)等腰直角三角形的性質(zhì)可得AD=CD=BD,∠CAD=∠B=45°,故①正確;根據(jù)同角的余角相等求出∠CDF=∠ADE,然后利用“ASA”證明△ADE≌△CDF,判斷出②,根據(jù)全等三角形的對應(yīng)邊相等,可得DE=DF=AF=AE,利用三角形的任意兩邊之和大于第三邊,可得BE+CF>EF,判斷出③,根據(jù)全等三角形的面積相等,可得S△ADF=S△BDE,從而求出四邊形AEDF的面積,判斷出④.

∵∠B=45°,AB=AC

∴點D為BC的中點,

∴AD=CD=BD

故①正確;

由AD⊥BC,∠BAD=45°

可得∠EAD=∠C

∵∠MDN是直角

∴∠ADF+∠ADE=∠CDF+∠ADF=∠ADC=90°

∴∠ADE=∠CDF

∴△ADE≌△CDF(ASA)

故②正確;

∴DE=DF,AE=CF,

∴AF=BE

∴BE+AE=AF+AE

∴AE+AF>EF

故③不正確;

由△ADE≌△CDF可得S△ADF=S△BDE

∴S四邊形AEDF=S△ACD=×AD×CD=×BC×BC=BC2

故④不正確.

故答案為:①②.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB=3cmAD=5cm,折疊紙片使B點落在邊AD上的點E處,折痕為PQ.過點EEFABPQ于點F,連接BF

1)若AP BP=12,則AE的長為

2)求證:四邊形BFEP為菱形;

3)當點EAD邊上移動時,折痕的端點P、Q也隨之移動.若限定點P,Q分別在邊ABBC上移動,求出點E在邊AD上移動的最大距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某小區(qū)要在面積為128平方米的正方形空地上建造一個休閑園地,并進行規(guī)劃(如圖):在休閑園地內(nèi)建一個面積為72平方米的正方形兒童游樂場,游樂場兩邊鋪設(shè)健身道,剩下的區(qū)域作為休息區(qū).現(xiàn)在計劃在休息區(qū)內(nèi)擺放占地面積為31.5平方米背靠背休閑椅(如圖),并要求休閑椅擺放在東西方向上或南北方向上,請通過計算說明休息區(qū)內(nèi)最多能擺放幾張這樣的休閑椅.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位長度的正方形,每個小正方形的頂點叫格點,△ABC△DEF的頂點都在格點上,結(jié)合所給的平面直角坐標系解答下列問題:

1)畫出△ABC向上平移4個單位長度后所得到的△A1B1C1;

2)畫出△DEF繞點O按順時針方向旋轉(zhuǎn)90°后所得到的△D1E1F1

3△A1B1C1△D1E1F1組成的圖形是軸對稱圖形嗎?如果是,請直接寫出對稱軸所在直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1,在平面直角坐標系xOy中,直線l1l2都經(jīng)過點A(6,0),它們與y軸的正半軸分別相交于點B,C,且∠BAO=ACO=30

(1)求直線l1l2的函數(shù)表達式;

(2)設(shè)P是第一象限內(nèi)直線l1上一點,連接PC,有SACP=24M,N分別是直線l1,l2上的動點,連接CMMN,MP,求CM+MN+NP的最小值;

(3)如圖2,在(2)的條件下,將△ACP沿射線PA方向平移,記平移后的三角形為△ACP,在平移過程中,若以A,C'P為頂點的三角形是等腰三角形,請直接寫出所有滿足條件的點C的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一個長方形沿著對角線剪開即可得到兩個全等的三角形,再把△ABC沿著AC方向平移,得到圖中的△GBHBGAC于點E,GHCD于點F.在圖中,除△ACD與△HGB全等外,你還可以指出哪幾對全等的三角形(不能添加輔助線和字母)?請選擇其中一對加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請在橫線上填上合適的內(nèi)容,完成下面的證明:

如圖,射線AH交折線ACGFEN于點B、D、E.已知∠A=∠1,∠C=∠F,BM平分∠CBD,EN平分∠FEH.求證:∠2=∠3.

證明:∵∠A=∠1(已知)

∴AC∥GF(

∴( )(

∵∠C=∠F(已知)

∴∠F=∠G

∴( )(

∴( )(

∵BM平分∠CBD,EN平分∠FEH

∴∠2= ∠3=

∴∠2=∠3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面直角坐標系xOy中的點P和⊙C,給出如下定義:如果⊙C的半徑為r,C外一點P到⊙C的切線長小于或等于2r,那么點P叫做⊙C離心點”.

1)當⊙O的半徑為1時,

①在點P1, ),P20,-2),P3,0中,⊙O離心點 ;

②點Pm,n)在直線上,且點P是⊙O離心點,求點P橫坐標m的取值范圍;

2C的圓心Cy軸上,半徑為2,直線x軸、y軸分別交于點A,B. 如果線段AB上的所有點都是⊙C離心點,請直接寫出圓心C縱坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某小區(qū)要用籬笆圍成一矩形花壇,花壇的一邊用足夠長的墻,另外三邊所用的籬笆之和恰好為米.

1求矩形的面積(用表示單位平方米)與邊(用表示,單位米)之間的函數(shù)關(guān)系式(不要求寫出自變量的取值范圍);怎樣圍,可使花壇面積最大?

2如何圍,可使此矩形花壇面積是平方米?

查看答案和解析>>

同步練習(xí)冊答案