【題目】在平面坐標系中,正方形的位置如圖所示,點的坐標為,點的坐標為,延長軸于點,作正方形,正方形的面積為______,延長軸于點,作正方形,……按這樣的規(guī)律進行下去,正方形的面積為______.

【答案】11.25

【解析】

推出AD=AB,∠DAB=ABC=ABA1=90°=DOA,求出∠ADO=BAA1,證△DOA∽△ABA1,再求出ABBA1,面積即可求出;求出第2個正方形的邊長;再求出第3個正方形邊長;依此類推得出第2019個正方形的邊長,求出面積即可.

∵四邊形ABCD是正方形,
AD=AB,∠DAB=ABC=ABA1=90°=DOA,
∴∠ADO+DAO=90°,∠DAO+BAA1=90°,
∴∠ADO=BAA1
∵∠DOA=ABA1,
∴△DOA∽△ABA1,

AB=AD= ,
BA1=
∴第2個正方形A1B1C1C的邊長A1C=A1B+BC=,

2個正方形A1B1C1C的面積()2=11.25
同理第3個正方形的邊長是=2
4個正方形的邊長是(3,,
2019個正方形的邊長是(2018,

面積是[2018]2=5×(2018×2=

故答案為:(1)11.25(2)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】我區(qū)某校舉行冬季運動會,其中一個項目是乒乓球比賽,比賽為單循環(huán)制,即所有參賽選手彼此恰好比賽一場. 記分規(guī)則是:每場比賽勝者得3分、負者得0分、平局各得1. 賽后統(tǒng)計,所有參賽者的得分總知為210分,且平局數(shù)不超過比賽總場數(shù)的,本次友誼賽共有參賽選手__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖坐標系中,O0,0),A6,6),B120),將△OAB沿直線CD折疊,使點A恰好落在線段OB上的點E處,若OE,則ACAD的值是( 。

A.12B.23C.67D.78

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=-x2+bx+c與x軸交于A、B兩點,B點的坐標為3,0,經(jīng)過A點的直線交拋物線于點D 2, 3.

1求拋物線的解析式和直線AD的解析式;

2過x軸上的點E a,0 作直線EFAD,交拋物線于點F,是否存在實數(shù)a,使得以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,求出滿足條件的a如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為調(diào)查我市民上班時最常用的交通工具的情況隨機抽取了部分市民進行調(diào)查,要求被調(diào)查者從A:自行車,B:電動車,C:公交車,D:家庭汽車;E.其他中選擇最常用的一項.將所有調(diào)查結果整理后繪制成如下不完整計圖,請結合統(tǒng)計圖回答下列問題:

1)本次一共調(diào)查了   名市民;扇形統(tǒng)計圖中B項對應的圓心角是   度;

2)補全條形統(tǒng)計圖;

3)若甲、乙兩人上班時從AB、C、D四種交通工具中隨或畫樹狀圖的方法,求出甲、乙兩人恰好選擇同一種交通工具上班的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在一次用頻率估計概率的實驗中,統(tǒng)計了某一結果出現(xiàn)的頻率,并繪制了如圖所示的統(tǒng)計圖,則符合這一結果的實驗可能是( 。

A. 從一個裝有2個白球和1個紅球的不透明袋子中任意摸出一球(小球除顏色外,完全相同),摸到紅球的概率

B. 擲一枚質(zhì)地均勻的硬幣,正面朝上的概率

C. 從一副去掉大小王的撲克牌,任意抽取一張,抽到黑桃的概率

D. 任意買一張電影票,座位號是2的倍數(shù)的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明袋子中有個紅球,個綠球和個白球,這些球除顏色外無其他差別,

時,從袋中隨機摸出個球,摸到紅球和摸到白球的可能性 (相同不相同”);

從袋中隨機摸出一個球,記錄其顏色,然后放回,大量重復該實驗,發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于,則的值是

的情況下,如果一次摸出兩個球,請用樹狀圖或列表法求摸出的兩個球顏色不同的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BCAB于點B,連接OC交⊙O于點E,弦ADOC,弦DFAB于點G

1)求證:點E是弧BD的中點;

2)求證:CD是⊙O的切線;

3)若tanADG,⊙O的半徑為5,求DF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠A90°,AB3,AC4,DAC中點,PAB上的動點,將P繞點D逆時針旋轉90°得到P′,連CP′的最小值為(  )

A.1.6B.2.4C.2D.2

查看答案和解析>>

同步練習冊答案