【題目】當(dāng)?shù)貢r(shí)間2019415日下午,法國(guó)巴黎圣母院發(fā)生火災(zāi),大火燒毀了巴黎圣母院后塔的塔頂.燒毀前,為測(cè)量此塔頂的高度,在地面選取了與塔底共線的兩點(diǎn)、、的同側(cè),在處測(cè)量塔頂的仰角為27°,在處測(cè)量塔頂的仰角為45°,的距離是89.5米.設(shè)的長(zhǎng)為米,則下列關(guān)系式正確的是(

A.B.

C.D.

【答案】A

【解析】

設(shè)BD的長(zhǎng)為x米,根據(jù)等腰三角形的判定得出CDBD,進(jìn)而表達(dá)出AD,即可得答案.

解:設(shè)BD的長(zhǎng)為x米,

∵在C處測(cè)量塔頂B的仰角為45°,即∠BCD=45°

由題意可知,BD⊥CD,

CBD=45°,

∴CD=BD=x

∵AC的距離是89.5米,

AD=x+89.5,

∵在A處測(cè)量塔頂B的仰角為27°,即∠A=27°,

,
故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綿陽(yáng)某公司銷售統(tǒng)計(jì)了每個(gè)銷售員在某月的銷售額,繪制了如下折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖:

設(shè)銷售員的月銷售額為x(單位:萬(wàn)元)。銷售部規(guī)定:當(dāng)x<16時(shí),為不稱職,當(dāng) 時(shí)為基本稱職,當(dāng) 時(shí)為稱職,當(dāng) 時(shí)為優(yōu)秀”.根據(jù)以上信息,解答下列問(wèn)題:

(1)補(bǔ)全折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(2)求所有稱職優(yōu)秀的銷售員銷售額的中位數(shù)和眾數(shù);

(3)為了調(diào)動(dòng)銷售員的積極性,銷售部決定制定一個(gè)月銷售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡月銷售額達(dá)到或超過(guò)這個(gè)標(biāo)準(zhǔn)的銷售員將獲得獎(jiǎng)勵(lì)。如果要使得所有稱職優(yōu)秀的銷售員的一半人員能獲獎(jiǎng),月銷售額獎(jiǎng)勵(lì)標(biāo)準(zhǔn)應(yīng)定為多少萬(wàn)元(結(jié)果去整數(shù))?并簡(jiǎn)述其理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P和⊙C,給出如下的定義:若⊙C上存在兩個(gè)點(diǎn)A、B,使得∠APB60°,則稱P為⊙C的可視點(diǎn).

1)當(dāng)⊙O的半徑為1時(shí),

①在點(diǎn)、E(11)、F(3,0)中,⊙O的可視點(diǎn)是______

②過(guò)點(diǎn)M(4,0)作直線ly=kx+b,若直線l上存在⊙O的可視點(diǎn),求b的取值范圍;

2)若T(t,0),⊙T的半徑為1,直線y=上存在⊙T的可視點(diǎn),且所有可視點(diǎn)構(gòu)成的線段長(zhǎng)度為n,若,直接寫(xiě)出t 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(﹣2,m),B(4,﹣2)兩點(diǎn),與軸交于C點(diǎn),過(guò)A作AD⊥軸于D.

(1)求這兩個(gè)函數(shù)的解析式;

(2)求△ADC的面積.

(3)根據(jù)圖象直接寫(xiě)出不等式的解集

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABO是正三角形,CDAB,把△ABO繞△OCD的內(nèi)心P旋轉(zhuǎn)180°得到△EFG

1)在圖中畫(huà)出點(diǎn)P和△EFG,保留畫(huà)圖痕跡,簡(jiǎn)要說(shuō)明理由

2)若AO3CD2,求A點(diǎn)運(yùn)動(dòng)到E點(diǎn)路徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】教材呈現(xiàn):下圖是華師版八年級(jí)上冊(cè)數(shù)學(xué)教材第96頁(yè)的部分內(nèi)容.

請(qǐng)根據(jù)教材中的分析,結(jié)合圖①,寫(xiě)出角平分線的性質(zhì)定理完整的證明過(guò)程.

定理應(yīng)用:

如圖②,在四邊形中,,點(diǎn)在邊上.平分,平分

1)求證:

2)若,,則的長(zhǎng)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下面的材料:

小明同學(xué)遇到這樣一個(gè)問(wèn)題,如圖1AB=AE,∠ABC=EAD,AD=mAC,點(diǎn)P在線段BC上,∠ADE=ADP+ACB,求的值.

小明研究發(fā)現(xiàn),作∠BAM=AED,交BC于點(diǎn)M,通過(guò)構(gòu)造全等三角形,將線段BC轉(zhuǎn)化為用含AD的式子表示出來(lái),從而求得的值(如圖2).

1)小明構(gòu)造的全等三角形是:_________________

2)請(qǐng)你將小明的研究過(guò)程補(bǔ)充完整,并求出的值.

3)參考小明思考問(wèn)題的方法,解決問(wèn)題:

如圖3,若將原題中“AB=AE”改為“AB=kAE”,“點(diǎn)P在線段BC上”改為“點(diǎn)P在線段BC的延長(zhǎng)線上”,其它條件不變,若∠ACB=2α,求:的值(結(jié)果請(qǐng)用含α,km的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,以等邊ABC的邊BC為直徑作⊙O,分別交AB,AC于點(diǎn)D,E,過(guò)點(diǎn)DDFACAC于點(diǎn)F.

(1)求證:DF是⊙O的切線;

2)若等邊ABC的邊長(zhǎng)為8,求由、DF、EF圍成的陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知⊙O的半徑為2,四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABC=∠AOC,且ADCD,則圖中陰影部分的面積等于______

查看答案和解析>>

同步練習(xí)冊(cè)答案