精英家教網(wǎng)如圖所示,O是直線AB上一點,∠AOC=
13
∠BOC,OC是∠AOD的平分線.
(1)求∠COD的度數(shù).
(2)判斷OD與AB的位置關(guān)系,并說出理由.
分析:利用∠AOC=
1
3
∠BOC及補角的性質(zhì)就可求出∠COD的度數(shù);求出∠AOD的度數(shù)就可知道OD與AB的位置關(guān)系.
解答:解:(1)∵∠AOC+∠BOC=180°,∠AOC=
1
3
∠BOC,
1
3
∠BOC+∠BOC=180°,
解得∠BOC=135°,
∴∠AOC=180°-∠BOC
=180°-135°=45°,
∵OC平分∠AOD,
∴∠COD=∠AOC=45°.

(2)OD⊥AB.
理由:由(1)知
∠AOC=∠COD=45°,
∴∠AOD=∠AOC+∠COD=90°,
∴OD⊥AB(垂直定義).
點評:此題主要考查了補角的性質(zhì)及垂直的定義,要注意領(lǐng)會由直角得垂直這一要點.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•廣安)已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸是直線x=1.下列結(jié)論:
①abc>O,②2a+b=O,③b2-4ac<O,④4a+2b+c>O
其中正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=ax2+bx+c(a≠0)在平面直角坐標系中的位置如圖所示,對稱軸是直線x=
1
3
.則下列結(jié)論中,正確的是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,O是直線AC上一點,OB是一條射線,OD平分∠AOB,OE在∠BOC內(nèi),∠BOE=
13
∠EOC,∠DOE=60°.
(Ⅰ)求∠EOC的度數(shù);
(Ⅱ)在上圖中,哪些角互為余角?為什么?互為補角的角有幾對?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,0是直線AB上一點,0C是∠AOB的平分線.
(1)圖中互余的角是
∠AOD與∠DOC
∠AOD與∠DOC
;
(2)圖中互補的角是
∠AOD與∠BOD、∠AOC與∠BOC
∠AOD與∠BOD、∠AOC與∠BOC

查看答案和解析>>

同步練習冊答案