如圖,四邊形ABCD內(nèi)接于⊙O,并且AD是⊙O的直徑,C是弧BD的中點(diǎn),AB和DC的延長(zhǎng)線交⊙O外一點(diǎn)E.求證:BC=EC.

【答案】分析:連接AC,先根據(jù)直徑所對(duì)的角是直角,圓內(nèi)接四邊形的性質(zhì)和等弧所對(duì)的圓周角相等得到∠E=∠D,∠EBC=∠E,從而根據(jù)等角對(duì)等邊可證BC=EC.
解答:證明:連接AC.
∵AD是⊙O的直徑,
∴∠ACD=90°=∠ACE.
∵四邊形ABCD內(nèi)接于⊙O,
∴∠D+∠ABC=180°,又∠ABC+∠EBC=180°,
∴∠EBC=∠D.
∵C是弧BD的中點(diǎn),
∴∠1=∠2,
∴∠1+∠E=∠2+∠D=90°,
∴∠E=∠D,
∴∠EBC=∠E,
∴BC=EC.
點(diǎn)評(píng):主要考查了圓內(nèi)接四邊形的性質(zhì)和圓、等腰三角形的有關(guān)性質(zhì).根據(jù)圓內(nèi)接四邊形的性質(zhì)和等弧所對(duì)的圓周角相等得到∠EBC=∠E是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC與BD互相垂直平分于點(diǎn)O,設(shè)AC=2a,BD=2b,請(qǐng)推導(dǎo)這個(gè)四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對(duì)角線、周長(zhǎng)、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD的對(duì)角線AC、BD交于點(diǎn)P,過(guò)點(diǎn)P作直線交AD于點(diǎn)E,交BC于點(diǎn)F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長(zhǎng)線上的一點(diǎn),且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是正方形,點(diǎn)E是BC的中點(diǎn),∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點(diǎn)E是BC的中點(diǎn)”改為“E是BC上任意一點(diǎn)”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案