如圖,將含30°角的直角三角尺ABC繞點B順時針旋轉150°后得到△EBD,連接CD.若△BCD的面積為3cm2,則AC=    cm.
【答案】分析:作DF⊥BE,由題意知,△ABC≌△DBE,則AC=ED,因為∠ABC=30°,∠ACB=90°,則BC=AC,又在直角△DFE中,∠FDE=30°,所以,DF=DE=AC,所以,×AC×AC=3,即可解出AC的長;
解答:解:作DF⊥BE,
由題意知,△ABC≌△DBE,
∴AC=ED,
∵∠ABC=30°,∠ACB=90°,
∴BC=AC,
又在直角△DFE中,∠FDE=30°,
∴DF=DE=AC,
×AC×AC=3,
解得,AC=2cm.
故答案為:2.
點評:本題主要考查了旋轉的性質和解直角三角形,掌握旋轉前后的兩個三角形全等,及含30度角的直角三角形中,邊與邊之間的關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,將含30°角的直角三角板ABC(∠B=30°)繞其直角頂點A逆時針旋轉α解(0°<α<90°),得到Rt△ADE,AD與BC相交于點M,過點M作MN∥DE交AE于點N,連接NC.設BC=4,BM=x,△MNC的面積為S△MN精英家教網C,△ABC的面積為S△ABC
(1)求證:△MNC是直角三角形;
(2)試求用x表示S△MNC的函數(shù)關系式,并寫出x的取值范圍;
(3)以點N為圓心,NC為半徑作⊙N,
①當直線AD與⊙N相切時,試探求S△MNC與S△ABC之間的關系;
②當S△MNC=
14
S△ABC時,試判斷直線AD與⊙N的位置關系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將含30°角的直角三角板ABC(∠A=30°)繞其直角頂點C順時針旋轉α角(0°<α<90°),得到Rt△A′B′C,A′C與AB交于點D,過點D作DE∥A′B′精英家教網交CB′于點E,連接BE.易知,在旋轉過程中,△BDE為直角三角形.設BC=1,AD=x,△BDE的面積為S.
(1)當α=30°時,求x的值.
(2)求S與x的函數(shù)關系式,并寫出x的取值范圍;
(3)以點E為圓心,BE為半徑作⊙E,當S=
14
S△ABC
時,判斷⊙E與A′C的位置關系,并求相應的tanα值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,將含30°角的直角三角板ABC(∠A=30°)繞其直角頂點C順時針旋轉α角(0°<α<90°),得到Rt△A′B′C,A′C與AB交于點D,過點D作DE∥A′B′交CB′于點E,連接BE.易知,在旋轉過程中,△BDE為直角三角形.設BC=1,AD=x,△BDE的面積為S.
(1)當α=30°時,求x的值.
(2)求S與x的函數(shù)關系式,并寫出x的取值范圍;
(3)以點E為圓心,BE為半徑作⊙E,當S=數(shù)學公式時,判斷⊙E與A′C的位置關系,并求相應的tanα值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《三角形》(19)(解析版) 題型:解答題

(2010•龍巖質檢)如圖,將含30°角的直角三角板ABC(∠A=30°)繞其直角頂點C順時針旋轉α角(0°<α<90°),得到Rt△A′B′C,A′C與AB交于點D,過點D作DE∥A′B′交CB′于點E,連接BE.易知,在旋轉過程中,△BDE為直角三角形.設BC=1,AD=x,△BDE的面積為S.
(1)當α=30°時,求x的值.
(2)求S與x的函數(shù)關系式,并寫出x的取值范圍;
(3)以點E為圓心,BE為半徑作⊙E,當S=時,判斷⊙E與A′C的位置關系,并求相應的tanα值.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年福建省龍巖市初中學業(yè)質量檢查數(shù)學試卷(解析版) 題型:解答題

(2010•龍巖質檢)如圖,將含30°角的直角三角板ABC(∠A=30°)繞其直角頂點C順時針旋轉α角(0°<α<90°),得到Rt△A′B′C,A′C與AB交于點D,過點D作DE∥A′B′交CB′于點E,連接BE.易知,在旋轉過程中,△BDE為直角三角形.設BC=1,AD=x,△BDE的面積為S.
(1)當α=30°時,求x的值.
(2)求S與x的函數(shù)關系式,并寫出x的取值范圍;
(3)以點E為圓心,BE為半徑作⊙E,當S=時,判斷⊙E與A′C的位置關系,并求相應的tanα值.

查看答案和解析>>

同步練習冊答案