【題目】已知關(guān)于x的方程x2﹣3mx+2(m﹣1)=0的兩根為x1、x2 , 且 + =﹣ ,則m的值是多少?

【答案】解:根據(jù)題意得x1+x2=3m,x1x2=2(m﹣1), ∵ + =﹣
=﹣ ,
=﹣
解得m= ,
∵△>0,
∴m的值為
【解析】利用根與系數(shù)的關(guān)系得到x1+x2=3m,x1x2=2(m﹣1),再變形已知條件得到 =﹣ ,則 =﹣ ,然后解方程求出m,再利用判別式的意義可確定m的值.
【考點(diǎn)精析】利用根與系數(shù)的關(guān)系對(duì)題目進(jìn)行判斷即可得到答案,需要熟知一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a、b、c而定;兩根之和等于方程的一次項(xiàng)系數(shù)除以二次項(xiàng)系數(shù)所得的商的相反數(shù);兩根之積等于常數(shù)項(xiàng)除以二次項(xiàng)系數(shù)所得的商.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)(k≠0)在第一象限內(nèi)的圖象如圖所示,點(diǎn)P在的圖象上,PC⊥x軸,垂足為C,交的圖象于點(diǎn)A,PD⊥y軸,垂足為D,交的圖象于點(diǎn)B.已知點(diǎn)A(m,1)為線段PC的中點(diǎn).

(1)求m和k的值;

(2)求四邊形OAPB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使∠BOC65°,將一直角三角尺的直角頂點(diǎn)放在點(diǎn)O

1)如圖①,若三角尺MON的一邊ON與射線OB重合,則∠MOC   ;

2)如圖②,將三角尺MON繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)一定角度,此時(shí)OC是∠MOB的平分線,求∠BON和∠CON的度數(shù);

3)將三角尺MON繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)至如圖③所示的位置時(shí),∠NOC=∠AOM,求∠NOB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,邊AB、AC的垂直平分線分別交BCDE

(1)若BC=8,則△ADE周長(zhǎng)是多少?

(2)若∠BAC=118°,則∠DAE的度數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABBDCDBD,∠A與∠AEF互補(bǔ),以下是證明CDEF的推理過程及理由,請(qǐng)你在橫線上補(bǔ)充適當(dāng)條件,完整其推理過程或理由.

證明:∵ABBD,CDBD(已知)

∴∠ABD=∠CDB   (  。

∴∠ABD+CDB180°

AB   (  。

又∠A與∠AEF互補(bǔ) (  。

A+AEF   

AB   (   )

CDEF (  。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對(duì)角線相交于點(diǎn)O,且ABAD,過OOEBDBC于點(diǎn)E.CDE的周長(zhǎng)為10,則ABAD的值是(  )

A. 10

B. 15

C. 25

D. 30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,“在初中數(shù)學(xué)教學(xué)時(shí)總使用計(jì)算器是否直接影響學(xué)生計(jì)算能力的發(fā)展”這一問題受到了廣泛關(guān)注,為此,某校隨機(jī)調(diào)查了n名學(xué)生對(duì)此問題的看法(看法分為三種:沒有影響,影響不大,影響很大),并將調(diào)查結(jié)果 繪制成如下不完整的統(tǒng)計(jì)表和扇形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖表提供的信息,解答下列問題:
n名學(xué)生對(duì)使用計(jì)算器影響計(jì)算能力的發(fā)展看法人數(shù)統(tǒng)計(jì)表

看法

沒有影響

影響不大

影響很大

學(xué)生人數(shù)(人)

40

60

m


(1)求n的值;
(2)統(tǒng)計(jì)表中的m=
(3)估計(jì)該校1800名學(xué)生中認(rèn)為“影響很大”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某運(yùn)輸公司用10輛相同的汽車將一批蘋果運(yùn)到外地,每輛汽車能裝8噸甲種蘋果,或10噸乙種蘋果,或11噸丙種蘋果.公司規(guī)定每輛車只能裝同一種蘋果,而且必須滿載.已知公司運(yùn)送了甲、乙、丙三種蘋果共100噸,且每種蘋果不少于一車.

(1)設(shè)用x輛車裝甲種蘋果,y輛車裝乙種蘋果,求yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)若運(yùn)送三種蘋果所獲利潤(rùn)的情況如下表所示:

設(shè)此次運(yùn)輸?shù)睦麧?rùn)為W(萬元),問:如何安排車輛分配方案才能使運(yùn)輸利潤(rùn)W最大,并求出最大利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)B6,0)的直線AB與直線OA相交于點(diǎn)A4,2),動(dòng)點(diǎn)M在線段OA和射線AC上運(yùn)動(dòng).

1)求直線AB的解析式.

2)求OAC的面積.

3)是否存在點(diǎn)M,使OMC的面積是OAC的面積的?若存在求出此時(shí)點(diǎn)M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案