【題目】如圖1,已知□ABCD,AB∥x軸,AB=6,點A的坐標為(1,﹣4),點D的坐標為(﹣3,4),點B在第四象限,點P是□ABCD邊上的一個動點.
(1)若點P在邊BC上,PD=CD,求點P的坐標.
(2)若點P在邊AB,AD上,點P關(guān)于坐標軸對稱的點Q落在直線y=x﹣1上,求點P的坐標.
(3)若點P在邊AB,AD,CD上,點G是AD與y軸的交點,如圖2,過點P作y軸的平行線PM,過點G作x軸的平行線GM,它們相交于點M,將△PGM沿直線PG翻折,當點M的對應點落在坐標軸上時,求點P的坐標.(直接寫出答案)
【答案】(1)點P坐標為(3,4);(2)點P的坐標為(﹣3,4)或(﹣1,0)或(5,﹣4)或(3,﹣4);(3)點P坐標為(2,﹣4)或(﹣,3)或(﹣,4)或(,4).
【解析】試題分析:(1)點P在BC上,要使PD=CD,只有P與C重合;
(2)首先要分點P在邊AB,AD上時討論,根據(jù)“點P關(guān)于坐標軸對稱的點Q”,即還要細分“點P關(guān)于x軸的對稱點Q和點P關(guān)于y軸的對稱點Q”討論,根據(jù)關(guān)于x軸、y軸對稱點的特征(關(guān)于x軸對稱時,點的橫坐標不變,縱坐標變成相反數(shù);關(guān)于y軸對稱時,相反;)將得到的點Q的坐標代入直線y=x-1,即可解答;
(3)在不同邊上,根據(jù)圖象,點M翻折后,點M’落在x軸還是y軸,可運用相似求解.
試題解析:(1)∵CD=6,∴點P與點C重合,∴點P的坐標是(3,4).
(2)①當點P在邊AD上時,由已知得,直線AD的函數(shù)表達式為:,設(shè)P(a,-2a-2),且-3≤a≤1.
若點P關(guān)于x軸對稱點Q1(a,2a+2)在直線y=x-1上,∴2a+2=a-1,解得a=-3,此時P(-3,4).
若點P關(guān)于y軸對稱點Q2(-a,-2a-2)在直線y=x-1上,∴-2a-2=-a-1,解得a=-1,此時P(-1,0).
②當點P在邊AB上時,設(shè)P(a,-4),且1≤a≤7.
若點P關(guān)于x軸對稱點Q3(a,4)在直線y=x-1上,∴4=a-1,解得a=5,此時P(5,-4).
若點P關(guān)于y軸對稱點Q4(-a,-4)在直線y=x-1上,∴-4=-a-1,解得a=3,此時P(3,-4).
綜上所述,點P的坐標為(-3,4)或(-1,0)或(5,-4)或(3,-4).
(3)因為直線AD為y=-2x-2,所以G(0,-2).
①如圖,當點P在CD邊上時,可設(shè)P(m,4),且-3≤m≤3,則可得M′P=PM=4+2=6,M′G=GM=|m|,易證得△OGM′∽△HM′P,則,即,則OM′=,在Rt△OGM′中,由勾股定理得,,解得m=-或,則P(-,4)或(,4);
②如下圖,當點P在AD邊上時,設(shè)P(m,-2m-2),則PM′=PM=|-2m|,GM′=MG=|m|,易證得△OGM′∽△HM′P,則,即,則OM′=,在Rt△OGM′中,由勾股定理得,,整理得m= -,則P(-,3);
如下圖,當點P在AB邊上時,設(shè)P(m,-4),此時M′在y軸上,則四邊形PM′GM是正方形,所以GM=PM=4-2=2,則P(2,-4).
綜上所述,點P的坐標為(2,-4)或(-,3)或(-,4)或(,4).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=2,AD=3,BE=1,動點P從點A出發(fā),沿路徑A→D→C→E運動,則△APE的面積y與點P經(jīng)過的路徑長x之間的函數(shù)關(guān)系用圖象表示大致是
( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解八年級學生的視力情況,對八年級的學生進行了一次視力調(diào)查,并將調(diào)查數(shù)據(jù)進行統(tǒng)計整理,繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖的一部分.
視力 | 頻數(shù)(人) | 頻率 |
4.0≤x<4.3 | 20 | 0.1 |
4.3≤x<4.6 | 40 | 0.2 |
4.6≤x<4.9 | 70 | 0.35 |
4.9≤x<5.2 | a | 0.3 |
5.2≤x<5.5 | 10 | b |
(1)在頻數(shù)分布表中,a= , b=;
(2)將頻數(shù)分布直方圖補充完整;
(3)若視力在4.6以上(含4.6)均屬正常,求視力正常的人數(shù)占被調(diào)查人數(shù)的百分比是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一個邊長不定的正方形ABCD,它的兩個相對的頂點A,C分別在邊長為1的正六邊形一組平行的對邊上,另外兩個頂點B,D在正六邊形內(nèi)部(包括邊界),則正方形邊長a的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=3,AB=5,若以A、B、C、P四點為頂點組成一個平行四邊形,則這個平行四邊形的周長為_____。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本題10分)如圖,在△ABC中,AC=BC,∠ACB=90°,⊙O(圓心O在△ABC內(nèi)部)經(jīng)過B、C兩點,交AB于點E,過點E作⊙O的切線交AC于點F.延長CO交AB于點G,作ED∥AC交CG于點D
(1)求證:四邊形CDEF是平行四邊形;
(2)若BC=3,tan∠DEF=2,求BG的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com