【題目】直線ax+by+c=0與圓O:x2+y2=16相交于兩點M、N,若c2=a2+b2 , P為圓O上任意一點,則 的取值范圍是

【答案】[﹣6.10]
【解析】解:取MN的中點A,連接OA,則OA⊥MN, ∵c2=a2+b2 ,
∴O點到直線MN的距離OA= =1,
x2+y2=16的半徑r=4,
∴Rt△AON中,設(shè)∠AON=θ,得cosθ= = ,
cos∠MON=cos2θ=2cos2θ﹣1= ﹣1=﹣ ,
由此可得, =| || |cos∠MON
=4×4×(﹣ )=﹣14,
=( )( )= + 2 +
=﹣14+16﹣2 =2﹣2| || |cos∠AOP=2﹣8cos∠AOP,
同向時,取得最小值且為2﹣8=﹣6,
, 反向時,取得最大值且為2+8=10.
的取值范圍是[﹣6.10].

所以答案是:[﹣6.10].

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為厲行節(jié)能減排,倡導(dǎo)綠色出行,今年3月以來.“共享單車”(俗稱“小黃車”)公益活動登陸我市中心城區(qū),某公司擬在甲、乙兩個街道社區(qū)投放一批“小黃車”,這批自行車包括A、B兩種不同款型,請回答下列問題:
問題1:單價
該公司早期在甲街區(qū)進行了試點投放,共投放A、B兩型自行車各50輛,投放成本共計7500元,其中B型車的成本單價比A型車高10元,A、B兩型自行車的單價各是多少?
問題2:投放方式
該公司決定采取如下投放方式:甲街區(qū)每1000人投放a輛“小黃車”,乙街區(qū)每1000人投放 輛“小黃車”,按照這種投放方式,甲街區(qū)共投放1500輛,乙街區(qū)共投放1200輛,如果兩個街區(qū)共有15萬人,試求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某銷售公司為了解員工的月工資水平,從1000位員工中隨機抽取100位員工進行調(diào)查,得到如下的頻率分布直方圖:
(1)試由此圖估計該公司員工的月平均工資;
(2)該公司工資發(fā)放是以員工的營銷水平為重要依據(jù)來確定的,一般認為,工資低于4500元的員工屬于學(xué)徒階段,沒有營銷經(jīng)驗,若進行營銷將會失。桓哂4500元的員工是具備營銷成熟員工,進行營銷將會成功.現(xiàn)將該樣本按照“學(xué)徒階段工資”、“成熟員工工資”分為兩層,進行分層抽樣,從中抽出5人,在這5人中任選2人進行營銷活動.活動中,每位員工若營銷成功,將為公司贏得3萬元,否則公司將損失1萬元,試問在此次比賽中公司收入多少萬元的可能性最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|x2﹣2x<0},B={x|y=log2(x﹣1)},則A∪B=(
A.(0,+∞)
B.(1,2)
C.(2,+∞)
D.(﹣∞,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點P是曲線C1:(x﹣2)2+y2=4上的動點,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,以極點O為中心,將點P逆時針旋轉(zhuǎn)90°得到點Q,設(shè)點Q的軌跡方程為曲線C2
(1)求曲線C1 , C2的極坐標方程;
(2)射線θ= 與曲線C1 , C2分別交于A,B兩點,定點M(2,0),求△MAB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x﹣ax(a>0,且a≠1).
(1)當a=e,x取一切非負實數(shù)時,若 ,求b的范圍;
(2)若函數(shù)f(x)存在極大值g(a),求g(a)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ﹣ax,e為自然對數(shù)的底數(shù) (Ⅰ)若函數(shù)f(x)的圖象在點(e2 , f(e2))處的切線方程為 3x+4y﹣e2=0,求實數(shù)a,b的值;
(Ⅱ)當b=1時,若存在 x1 , x2∈[e,e2],使 f(x1)≤f′(x2)+a成立,求實數(shù)a的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ln2(x﹣1)﹣ ﹣x+3. (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若當x≥1時,不等式(x+1)x+m≤exx+m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對某校高一年級學(xué)生參加社區(qū)服務(wù)次數(shù)進行統(tǒng)計,隨機抽取M名學(xué)生作為樣本,得到這M名學(xué)生參加社區(qū)服務(wù)的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合計

M

1


(1)求出表中M、p及圖中a的值;
(2)試估計他們參加社區(qū)服務(wù)的平均次數(shù);
(3)在所取樣本中,從參加社區(qū)服務(wù)的次數(shù)不少于20次的學(xué)生中任選2人,求至少1人參加社區(qū)服務(wù)次數(shù)在區(qū)間[20,25)內(nèi)的概率.

查看答案和解析>>

同步練習(xí)冊答案