【題目】如圖,AD是∠BAC的平分線,DE平行AB交AC于點(diǎn)E,DF平行AC交AB于點(diǎn)F,延長(zhǎng)FE交BC的延長(zhǎng)線于點(diǎn)G.
求證:
(1)AG=DG;
(2)∠GAC=∠B.
【答案】(1)詳見(jiàn)解析;(2)詳見(jiàn)解析
【解析】
(1)由DE∥AB,DF∥AC,可證得四邊形AEDF是平行四邊形,∠DAF=∠ADE,又由AD是∠BAC的平分線,可證得AE=DE,即可證得四邊形AEDF是菱形,則可得EF是AD的垂直平分線,繼而證得結(jié)論;
(2)由AG=DG,AE=DE,可得∠GAD=∠GDA,∠EAD=∠EDA,繼而證得∠GAC=∠GDE,又由DE∥AB,可得∠GDC=∠B,繼而證得結(jié)論.
證明:(1)∵DE∥AB,DF∥AC,
∴四邊形AEDF是平行四邊形,∠DAF=∠ADE,
∵AD是∠BAC的平分線,
∴∠DAF=∠DAE,
∴∠DAE=∠ADE,
∴AE=DE,
∴四邊形AEDF是菱形,
∴EF是AD的垂直平分線,
∵延長(zhǎng)FE交BC的延長(zhǎng)線于點(diǎn)G,
∴AG=DG;
(2)∵AG=DG,AE=DE,
∴∠GAD=∠GDA,∠EAD=∠EDA,
∵∠GAC=∠GAD﹣∠EAD,∠GDE=∠GDA﹣∠EDA,
∴∠GAC=∠GDE,
∵DE∥AB,
∴∠GDE=∠B,
∴∠GAC=∠B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過(guò)點(diǎn)A(,0)和點(diǎn)B(1,),與x軸的另一個(gè)交點(diǎn)為C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)點(diǎn)D在對(duì)稱(chēng)軸的右側(cè),x軸上方的拋物線上,且∠BDA=∠DAC,求點(diǎn)D的坐標(biāo);
(3)在(2)的條件下,連接BD,交拋物線對(duì)稱(chēng)軸于點(diǎn)E,連接AE.
①判斷四邊形OAEB的形狀,并說(shuō)明理由;
②點(diǎn)F是OB的中點(diǎn),點(diǎn)M是直線BD的一個(gè)動(dòng)點(diǎn),且點(diǎn)M與點(diǎn)B不重合,當(dāng)∠BMF=∠MFO時(shí),請(qǐng)直接寫(xiě)出線段BM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,垂足為H,連結(jié)AC,過(guò)上一點(diǎn)E作EG∥AC交CD的延長(zhǎng)線于點(diǎn)G,連結(jié)AE交CD于點(diǎn)F,且EG=FG,連結(jié)CE.
(1)求證:△ECF∽△GCE;
(2)求證:EG是⊙O的切線;
(3)延長(zhǎng)AB交GE的延長(zhǎng)線于點(diǎn)M,若tanG=,AH=,求EM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市銷(xiāo)售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場(chǎng)調(diào)查,每天的銷(xiāo)售量y(千克)與每千克售價(jià)x(元)滿(mǎn)足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價(jià)x(元/千克) | 50 | 60 | 70 |
銷(xiāo)售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤(rùn)為W(元),則當(dāng)售價(jià)x定為多少元時(shí),廠商每天能獲得最大利潤(rùn)?最大利潤(rùn)是多少?
(3)如果超市要獲得每天不低于1350元的利潤(rùn),且符合超市自己的規(guī)定,那么該商品每千克售價(jià)的取值范圍是多少?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以等邊三角形ABC的BC邊為直徑畫(huà)半圓,分別交AB、AC于點(diǎn)E、D,DF是圓的切線,過(guò)點(diǎn)F作BC的垂線交BC于點(diǎn)G.若AF的長(zhǎng)為2,則FG的長(zhǎng)為
A. 4 B. C. 6 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,,以為直徑的圓交于點(diǎn),過(guò)點(diǎn)的⊙的切線交于點(diǎn)若,則⊙的半徑是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校7名學(xué)生在某次測(cè)量體溫(單位:℃)時(shí)得到如下數(shù)據(jù):36.3,36.4,36.5,36.7,36.6,36.5,36.5,對(duì)這組數(shù)據(jù)描述正確的是( 。
A.眾數(shù)是36.5B.中位數(shù)是36.7
C.平均數(shù)是36.6D.方差是0.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在平面直角坐標(biāo)系xOy中,Rt△OAB的直角頂點(diǎn)B在x軸的正半軸上,點(diǎn)A在第一象限,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)OA的中點(diǎn)C.交AB于點(diǎn)D,連結(jié)CD.若△ACD的面積是2,則k的值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求該拋物線的解析式;
(2)如圖①,若點(diǎn)D是拋物線上一動(dòng)點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為m(0<m<3),連接CD,BD,BC,AC,當(dāng)△BCD的面積等于△AOC面積的2倍時(shí),求m的值;
(3)若點(diǎn)N為拋物線對(duì)稱(chēng)軸上一點(diǎn),請(qǐng)?jiān)趫D②中探究拋物線上是否存在點(diǎn)M,使得以B,C,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫(xiě)出所有滿(mǎn)足條件的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com