如圖,在平面直角坐標(biāo)系中有一矩形ABCO,B點(diǎn)的坐標(biāo)為(12,6),點(diǎn)C、A在坐標(biāo)軸上.⊙A、⊙P的半徑均為1,點(diǎn)P從點(diǎn)C開(kāi)始在線段CO上以1單位/秒的速度向左運(yùn)動(dòng),運(yùn)動(dòng)到點(diǎn)O處停止.與此同時(shí),⊙A的半徑每秒鐘增大2個(gè)單位,當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),⊙A的半徑也停止變化.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
(1)在0<t<12時(shí),設(shè)△OAP的面積為s,試求s與t的函數(shù)關(guān)系式.并求出當(dāng)t為何值時(shí),s為矩形ABCO面積的
(2)在點(diǎn)P的運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻,⊙A與⊙P相切?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由.
【答案】分析:(1)利用直角三角形的面積公式得S=OA×OP=×6×(12-t)=-3t+36.又s=S矩形ABCO=×12×6可求出t的值.
(2)若兩圓相切,則有在Rt△AOP中,AO2+PO2=AP2.將OA=6,PO=12-t,AP=2t+1+1=1t+2代入,求出t.若有實(shí)解則相切,沒(méi)有實(shí)解則不相切.
解答:解:(1)∵B點(diǎn)的坐標(biāo)為(12,6),
∴OA=6,OC=12,
∴OP=12-t;
當(dāng)0<t<12時(shí),s=OA×OP=×6×(12-t)=-3t+36,
∵s=S矩形ABCO,
∴-3t+36=×12×6,
解得:t=4,
即當(dāng)t=4時(shí),S為矩形ABCO面積的

(2)如圖,當(dāng)⊙A與⊙P外切時(shí)

OP=12-t,AP=1+2t+1=2t+2;
在Rt△AOP中,AO2+PO2=AP2,
∴62+(12-t)2=(2t+2)2,
解得:(不合題意,舍去),t2=4;
此時(shí),P點(diǎn)坐標(biāo)為(8,0),
如圖,當(dāng)⊙A與⊙P內(nèi)切時(shí),

OP=12-t,AP=1+2t-1=2t;
在Rt△AOP中,AO2+PO2=AP2,
∴62+(12-t)2=(2t)2,
解得:,t2=-2-4(不合題意,舍去),
此時(shí),P點(diǎn)坐標(biāo)為(16-2,0).
點(diǎn)評(píng):考查面積公式和圓相切的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫(huà)圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫(xiě)出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫(xiě)出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案