某批發(fā)商以每件50元的價格購進400件T恤.若以單價70元銷售,預(yù)計可售出200件.批發(fā)商的銷售策略是:第一個月為增加銷售量,降價銷售,經(jīng)過市場調(diào)查,單價每降低0.5元,可多售出5件,但最低單價不低于購進的價格;第一個月結(jié)束后,將剩余的T恤一次性清倉銷售,清倉時單價為40元.設(shè)第一個月單價降低x元.
(1)根據(jù)題意,完成下表:

 
每件T恤的利潤(元)
銷售量(件)
第一個月
 
 
清倉時
 
 
(2)T恤的銷售單價定為多少元時,該批發(fā)商可獲得最大利潤?最大利潤為多少?

(1)圖表見解析;
(2)T恤的銷售單價定為45元時該批發(fā)商可獲得最大利潤,最大利潤為2250元.

解析試題分析:(1)根據(jù)已知首先表示出銷量以及每件利潤即可;
(2)首先表示出單價與利潤的關(guān)系,進而利用二次函數(shù)最值求法求出即可.
試題解析:(1)

 
每件T恤的利潤(元)
銷售量(件)
第一個月


清倉時


(2) 設(shè)批發(fā)商可獲得利潤元 ,

當(dāng)時,
售價為:50-5=45(元)
,
答:T恤的銷售單價定為45元時該批發(fā)商可獲得最大利潤,最大利潤為2250元.
考點:二次函數(shù)的應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,在平面直角坐標(biāo)系中,有一矩形ABCD,其三個頂點的坐標(biāo)分別為A(2,0)、B(8,0)、C(8,3).將直線l:y=-3x-3以每秒3個單位的速度向右運動,設(shè)運動時間為t秒.

(1)當(dāng)t=_________時,直線l經(jīng)過點A.(直接填寫答案)
(2)設(shè)直線l掃過矩形ABCD的面積為S,試求S>0時S與t的函數(shù)關(guān)系式.
(3)在第一象限有一半徑為3、且與兩坐標(biāo)軸恰好都相切的⊙M,在直線l出發(fā)的同時,⊙M以每秒2個單位的速度向右運動,如圖2所示,則當(dāng)t為何值時,直線l與⊙M相切?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

某商場經(jīng)營某種品牌的玩具,購進時的單價是30元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是40元時,銷售量是600件,而銷售單價每漲1元,就會少售出10件玩具.
(1)不妨設(shè)該種品牌玩具的銷售單價為x元(x > 40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結(jié)果填寫在表格中:

銷售單價(元)
x
銷售量y(件)
 
銷售玩具獲得利潤w(元)
 
(2)在(1)條件下,若商場獲得了10000元銷售利潤,求該玩具銷售單價x應(yīng)定為多少元?
(3)在(1)條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于44元,且商場要完成不少于540件的銷售任務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,用長為6m的鋁合金條制成“日”字形窗框,若窗框的寬為xm,窗戶的透光面積為ym2(鋁合金條的寬度不計).

(1)求出y與x的函數(shù)關(guān)系式;
(2)如何安排窗框的長和寬,才能使得窗戶的透光面積最大?并求出此時的最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,二次函數(shù)的頂點坐標(biāo)為(0,2),矩形ABCD的頂點B.C在x軸上,A.D在拋物線上,矩形ABCD在拋物線與x軸所圍成的圖形內(nèi)。

(1)求二次函數(shù)的解析式;
(2)設(shè)點D的坐標(biāo)為(x,y),試求矩形ABCD的周長P關(guān)于自變量x的函數(shù)解析式,并求出自變量x的取值范圍;
(3)是否存在這樣的矩形ABCD,使它的周長為9?試證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖(1)是某河上一座古拱橋的截面圖,拱橋橋洞上沿是拋物線形狀,拋物線兩端點與水面的距離都是1m,拱橋的跨度為10m,橋洞與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m的景觀燈.現(xiàn)把拱橋的截面圖放在平面直角坐標(biāo)系中,如圖(2).

求(1)拋物線的解析式;
(2)兩盞景觀燈P1、P2之間的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

二次函數(shù)y=ax²-6ax+c(a>0)的圖像拋物線過點C(0,4),設(shè)拋物線的頂點為D。

(1)若拋物線經(jīng)過點(1,-6),求二次函數(shù)的解析式;
(2)若a=1時,試判斷拋物線與x軸交點的個數(shù);
(3)如圖所示A、B是⊙P上兩點,AB=8,AP=5。且拋物線過點A(x1,y1),B(x2,y2),并有AD=BD。設(shè)⊙P上一動點E(不與A、B重合),且∠AEB為銳角,若<a≤1時,請判斷∠AEB與∠ADB的大小關(guān)系,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:二次函數(shù)的圖象開口向上,并且經(jīng)過原點.
(1)求的值;
(2)用配方法求出這個二次函數(shù)圖象的頂點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

鄞州區(qū)有一種可食用的野生菌,上市時,外商李經(jīng)理按市場價格30元/千克收購了這種野生菌1000千克存放入冷庫中,據(jù)預(yù)測,該野生菌的市場價格將以每天每千克上漲1元;但冷凍存放這批野生菌時每天需要支出各種費用合計310元,而且這類 野生菌在冷庫中最多保存160天,同時,平均每天有3千克的野生菌損壞不能出售.
(1)設(shè)天后每千克該野生菌的市場價格為y元,試寫出y與x之間的函數(shù)關(guān)系式;
(2)若存放x天后,將這批野生菌一次性出售,設(shè)這批野生菌的銷售總額為元,試寫出與x之間的函數(shù)關(guān)系式;
(3)李經(jīng)理將這批野生菌存放多少天后出售可獲得最大利潤元?
(利潤=銷售總額-收購成本-各種費用)

查看答案和解析>>

同步練習(xí)冊答案