【題目】為宣傳普及新冠肺炎防治知識(shí),引導(dǎo)學(xué)生做好防控.某校舉行了主題為防控新冠,從我做起的線上知識(shí)競(jìng)賽活動(dòng),測(cè)試內(nèi)容為20道判斷題,每道題5分,滿分100分,為了解八、九年級(jí)學(xué)生此次競(jìng)賽成績(jī)的情況,分別隨機(jī)在八、九年級(jí)各抽取了20名參賽學(xué)生的成績(jī).已知抽查得到的八年級(jí)的數(shù)據(jù)如下:80,95,75,75,9075,80,65,80,85,75,65,70,65,85,70,95,8075,80

為了便于分析數(shù)據(jù),統(tǒng)計(jì)員對(duì)八年級(jí)數(shù)據(jù)進(jìn)行了整理,得到了表一:

成績(jī)等級(jí)

分?jǐn)?shù)(單位:分)

學(xué)生數(shù)

D

60x≤70

5

C

70x≤80

a

B

80x≤90

b

A

90x≤100

2

九年級(jí)成績(jī)的平均數(shù)、中位數(shù)、優(yōu)秀率如下:(分?jǐn)?shù)80分以上、不含80分為優(yōu)秀)

年級(jí)

平均數(shù)

中位數(shù)

優(yōu)秀率

八年級(jí)

77.5

c

m%

九年級(jí)

76

82.5

50%

1)根據(jù)題目信息填空:a  ,c  ,m  ;

2)八年級(jí)小宇和九年級(jí)小樂的分?jǐn)?shù)都為80分,請(qǐng)判斷小宇、小樂在各自年級(jí)的排名哪位更靠前?請(qǐng)簡(jiǎn)述你的理由;

3)若九年級(jí)共有600人參加參賽,請(qǐng)估計(jì)九年級(jí)80分以上的人數(shù).

【答案】110,77.525;(2)小宇在八年級(jí)的排名更靠前,理由見解析;(3)估計(jì)九年級(jí)80分以上的人數(shù)約為300人.

【解析】

1)直接根據(jù)抽查得到的八年級(jí)的數(shù)據(jù)即可求出acm的值;

2)根據(jù)小宇、小樂的成績(jī)和所在年級(jí)抽查成績(jī)的中位數(shù)進(jìn)行比較即可得出結(jié)論;

3)用總?cè)藬?shù)乘以樣本中九年級(jí)成績(jī)80分以上的人數(shù)所占比例可得答案.

1)數(shù)據(jù)在70x≤80的有:80,7575,75,8080,75,80,75,8010個(gè),

所以a=10

將數(shù)據(jù)重新排序:65,65,6570,70,7575,75,75,75,8080,80,80,8085,85,90,9595,

所以中位數(shù)c=,

優(yōu)秀率m%=×100%=25%

故答案為:10,775,25

2)小宇在八年級(jí)的排名更靠前.

理由如下:八年級(jí)的中位數(shù)為77.5分,而小宇的分?jǐn)?shù)為80分,所以小宇的成績(jī)?yōu)橹猩嫌危?/span>

而九年級(jí)的中位數(shù)為82.5分,小樂的分?jǐn)?shù)都為80分,所以他在九年級(jí)為中下游;

3600×50%300

答:估計(jì)九年級(jí)80分以上的人數(shù)約為300人.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于⊙O,AB=AC.過(guò)點(diǎn)AAD//BC,與的平分線交于點(diǎn)DBDAC交于點(diǎn)E,與⊙O交于點(diǎn)F

1)求證:AD是⊙O的切線

2)求證:

3)若BC=2,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABHK是邊長(zhǎng)為6的正方形,點(diǎn)CD在邊AB上,且AC=DB=1,點(diǎn)P是線段CD上的動(dòng)點(diǎn),分別以APPB為邊在線段AB的同側(cè)作正方形AMNP和正方形BRQP,E、F分別為MNQR的中點(diǎn),連接EF,設(shè)EF的中點(diǎn)為G,則當(dāng)點(diǎn)P從點(diǎn)C運(yùn)動(dòng)到點(diǎn)D時(shí),點(diǎn)G移動(dòng)的路徑長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點(diǎn)AD為圓心,以大于的長(zhǎng)為半徑在AD的兩側(cè)作弧,交于兩點(diǎn)M、N;第二步,連結(jié)MN,分別交AB、AC于點(diǎn)E、F;第三步,連結(jié)DE、DF..若BD=6AF=4,CD=3,則BE的長(zhǎng)是( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+3分別交x軸、y軸于A,C兩點(diǎn),拋物線y=ax2+bx+c(a≠0),經(jīng)過(guò)A,C兩點(diǎn),與x軸交于點(diǎn)B(1,0).

(1)求拋物線的解析式;

(2)點(diǎn)D為直線AC上一點(diǎn),點(diǎn)E為拋物線上一點(diǎn),且D,E兩點(diǎn)的橫坐標(biāo)都為2,點(diǎn)F為x軸上的點(diǎn),若四邊形ADEF是平行四邊形,請(qǐng)直接寫出點(diǎn)F的坐標(biāo);

(3)若點(diǎn)P是線段AC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作x軸的垂線,交拋物線于點(diǎn)Q,連接AQ,CQ,求ACQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P為拋物線yx2上一動(dòng)點(diǎn),以P為頂點(diǎn),且經(jīng)過(guò)原點(diǎn)O的拋物線,記作“yp”,設(shè)其與x軸另一交點(diǎn)為A,點(diǎn)P的橫坐標(biāo)為m

1當(dāng)△OPA為直角三角形時(shí),m=    ;

當(dāng)△OPA為等邊三角形時(shí),求此時(shí)“yp”的解析式;

2)若P點(diǎn)的橫坐標(biāo)分別為1,2,3,…n(n為正整數(shù))時(shí),拋物線“yp”分別記作“”、“”…,“”,設(shè)其與x軸另外一交點(diǎn)分別為A1,A2A3,…An,過(guò)P1,P2P3,…Pnx軸的垂線,垂足分別為H1,H2,H3,…Hn

 1) Pn的坐標(biāo)為    ;OAn=    ;(用含n的代數(shù)式來(lái)表示)

當(dāng)PnHnOAn=16時(shí),求n的值.

 2)是否存在這樣的An,使得∠OP4An=90°,若存在,求n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC是等邊三角形,點(diǎn)D、E分別在AC、BC上,且CD=BE,

(1)求證:ABE≌△BCD;

(2)求出AFB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)CD在⊙O上,PBA延長(zhǎng)線上一點(diǎn),連接CA、CDAD,且∠PCA=∠ADC,CEABE,并延長(zhǎng)交ADF

1)求證:PC為⊙O的切線;

2)求證:

3)若,,求PA的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,拋物線x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,已知C點(diǎn)坐標(biāo)為(04),拋物線的頂點(diǎn)的橫坐標(biāo)為,點(diǎn)P是第四象限內(nèi)拋物線上的動(dòng)點(diǎn),四邊形OPAQ是平行四邊形,設(shè)點(diǎn)P的橫坐標(biāo)為m

1)求拋物線的解析式;

2)求使APC的面積為整數(shù)的P點(diǎn)的個(gè)數(shù);

3)當(dāng)點(diǎn)P在拋物線上運(yùn)動(dòng)時(shí),四邊形OPAQ可能是正方形嗎?若可能,請(qǐng)求出點(diǎn)P的坐標(biāo),若不可能,請(qǐng)說(shuō)明理由;

4)在點(diǎn)Q隨點(diǎn)P運(yùn)動(dòng)的過(guò)程中,當(dāng)點(diǎn)Q恰好落在直線AC上時(shí),則稱點(diǎn)Q和諧點(diǎn),如圖(2)所示,請(qǐng)直接寫出當(dāng)Q和諧點(diǎn)的橫坐標(biāo)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案