如圖,在平面直角坐標(biāo)系中,A、B為x軸上兩點,C、D為y軸上的兩點,經(jīng)

過點A、C、B的拋物線的一部分C1與經(jīng)過點A、D、B的拋物線的一部分C2組合成一條封閉曲線,我們把這條封

閉曲線稱為“蛋線”.已知點C的坐標(biāo)為(0,),點M是拋物線C2<0)的頂點.

(1)求A、B兩點的坐標(biāo);

(2)“蛋線”在第四象限上是否存在一點P,使得△PBC的面積最大?若存在,求出△PBC面積的最大值;若不存在,請說明理由;

(3)當(dāng)△BDM為直角三角形時,求的值.

 

【答案】

解:(1)令y=0,則 , 

∵m<0,∴,解得:, 。

∴A(,0)、B(3,0)。

(2)存在。理由如下:

 ∵設(shè)拋物線C1的表達(dá)式為),

把C(0,)代入可得,。    

                 ∴C1的表達(dá)式為:,即。    

   設(shè)P(p,),

∴ SPBC = SPOC + SBOP –SBOC =。

<0,∴當(dāng)時,SPBC最大值為。

(3)由C2可知: B(3,0),D(0,),M(1,),

∴BD2=,BM2=,DM2=。

∵∠MBD<90°, ∴討論∠BMD=90°和∠BDM=90°兩種情況:

當(dāng)∠BMD=90°時,BM2+ DM2= BD2 ,即=,

解得:,  (舍去)。 

當(dāng)∠BDM=90°時,BD2+ DM2= BM2 ,即=,

解得:, (舍去) 。  

綜上所述, 時,△BDM為直角三角形。

【解析】(1)在中令y=0,即可得到A、B兩點的坐標(biāo)。

(2)先用待定系數(shù)法得到拋物線C1的解析式,由SPBC = SPOC + SBOP –SBOC得到△PBC面積的表達(dá)式,根據(jù)二次函數(shù)最值原理求出最大值。

(3)先表示出DM2,BD2,MB2,再分兩種情況:①∠BMD=90°時;②∠BDM=90°時,討論即可求得m的值。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案