【題目】三個連續(xù)的正奇數(shù),最大數(shù)與最小數(shù)的積比中間一個數(shù)的6倍多3,求這三個數(shù).

【答案】5,7,9

【解析】

設(shè)中間的一個奇數(shù)為x,得到的方程(x+2)(x-2)=6x+3,解方程即可

設(shè)這三個連續(xù)的正奇數(shù)為(x-2),x,(x+2),根據(jù)題意,得(x+2)(x-2)=6x+3,整理,得x2-6x-7=0.解這個方程,得x1=7,x2=-1(不合題意,舍去).當x=7時,x-2=5,x+2=9.答:這三個數(shù)為5,7,9

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】近年來,我國煤礦安全事故頻頻發(fā)生,其中危害最大的是瓦斯,其主要成分是CO.在一次礦難事件的調(diào)查中發(fā)現(xiàn):從零時起,井內(nèi)空氣中CO的濃度達到4 mg/L,此后濃度呈直線型增加,在第7小時達到最高值46 mg/L,發(fā)生爆炸;爆炸后,空氣中的CO濃度成反比例下降,如圖,根據(jù)題中相關(guān)信息回答下列問題:

(1)求爆炸前后空氣中CO濃度y與時間x的函數(shù)關(guān)系式,并寫出相應(yīng)的自變量取值范圍;

(2)當空氣中的CO濃度達到34 mg/L時,井下3 km的礦工接到自動報警信號,這時他們至少要以多少km/h的速度撤離才能在爆炸前逃生?

(3)礦工只有在空氣中的CO濃度降到4 mg/L及以下時,才能回到礦井開展生產(chǎn)自救,求礦工至少在爆炸后多少小時才能下井?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列式子:(1)4>0;(2)2x+3y<0;(3)x=3;(4)x≠y;(5)x+y;(6)x+3≤7中,不等式的個數(shù)有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,是反映了爺爺每天晚飯或從家中出發(fā)去散步的時間與距離之間的關(guān)系的一幅圖.

(1)下圖反映了哪兩個變量之間的關(guān)系?

(2)爺爺從家里出發(fā)后20分鐘到30分鐘可能在做什么?

(3)爺爺每天散步多長時間?

(4)爺爺散步時最遠離家多少米?

(5)計算爺爺離開家后的20分鐘內(nèi)的平均速度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC與BD相交于點O,AB=8,∠BAD=60°,點E從點A出發(fā),沿AB以每秒2個單位長度的速度向終點B運動,當點E不與點A重合時,過點E作EF⊥AD于點F,作EG∥AD交AC于點G,過點G作GH⊥AD交AD(或AD的延長線)于點H,得到矩形EFHG,設(shè)點E運動的時間為t秒

(1)求線段EF的長(用含t的代數(shù)式表示);

(2)求點H與點D重合時t的值;

(3)設(shè)矩形EFHG與菱形ABCD重疊部分圖形的面積與S平方單位,求S與t之間的函數(shù)關(guān)系式;

(4)矩形EFHG的對角線EH與FG相交于點O′,當OO′∥AD時,t的值為 ;當OO′⊥AD時,t的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,拋物線y=x2+y軸相交于點A,點B與點O關(guān)于點A對稱

1)填空:點B的坐標是 ;

2)過點B的直線y=kx+b(其中k0)與x軸相交于點C,過點C作直線l平行于y軸,P是直線l上一點,且PB=PC,求線段PB的長(用含k的式子表示),并判斷點P是否在拋物線上,說明理由;

3)在(2)的條件下,若點C關(guān)于直線BP的對稱點C′恰好落在該拋物線的對稱軸上,求此時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在某次體育測試中,九年級一班女同學的一分鐘仰臥起坐成績(單位:個)如下表:

成績

45

46

47

48

49

50

人數(shù)

1

2

4

2

5

1

這此測試成績的中位數(shù)和眾數(shù)分別為(  )
A.47,49
B.47.5,49
C.48,49
D.48,50

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正方形具有而菱形不具有的性質(zhì)是( 。

A. 四邊相等 B. 四角相等

C. 對角線互相平分 D. 對角線互相垂直

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的方程kx2+2k+1x+2=0

1)當k=1時,求原方程的解.  

2)求證:無論k取任何實數(shù)時,方程總有實數(shù)根.

查看答案和解析>>

同步練習冊答案