【題目】如圖,在△ABC中,AB=ACDE是過點A的直線,BDDE于點D CEDE 于點 E.

1)若BCDE的同側(cè)(如圖所示),且AD=CE,求證:

2)若BC在的兩側(cè)(如圖所示 ),其他條件不變,ABAC仍垂直嗎?若是請給出證明;若不是,請說明理由.

【答案】1)證明見解析;(2ABAC,證明見解析.

【解析】

1)首先利用HL證明RtABDRtCAE,得到∠DBA=EAC,然后根據(jù)∠DAB+DBA=90°,可得∠BAC=90°,問題得證;

2)同(1)證明RtABDRtCAE,得到∠DAB=ECA,然后根據(jù)∠CAE+ECA=90°,可得∠BAC=90°,問題得解.

1)證明:∵BDDE,CEDE,

∴在RtABDRtCAE中,

,

RtABDRtCAEHL),

∴∠DBA=EAC,

∵∠DAB+DBA=90°

∴∠DAB+EAC=90°,

∴∠BAC=90°,

ABAC;

2ABAC,

理由如下:

同(1)可證得RtABDRtCAE

∴∠DAB=ECA,

∵∠CAE+ECA=90°

∴∠CAE+DAB=90°,即∠BAC=90°,

ABAC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進600個旅游紀(jì)念品,進價為每個6元,第一周以每個10元的價格售出200個,第二周若按每個10元的價格銷售仍可售出200個,但商店為了適當(dāng)增加銷量,決定降價銷售(根據(jù)市場調(diào)查,單價每降低1元,可多售出50個,但售價不得低于進價),單價降低x元銷售銷售一周后,商店對剩余旅游紀(jì)念品清倉處理,以每個4元的價格全部售出,如果這批旅游紀(jì)念品共獲利1250元,問第二周每個旅游紀(jì)念品的銷售價格為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,ABAD,AC5DABDCB90°,則四邊形ABCD的面積為( )

A.25B.12.5C.5D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,等腰的斜邊OBx軸上,直線經(jīng)過等腰的直角頂點A,交y軸于C點,雙曲線也經(jīng)過A連接BC.

k的值;

判斷的形狀,并求出它的面積.

若點Px正半軸上一動點,在點A的右側(cè)的雙曲線上是否存在一點M,使得是以點A為直角頂點的等腰直角三角形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,EAC上一點,且AE=BC,過點AADCA,垂足為A,且AD=AC,ABDE交于點F試判斷線段ABDE的數(shù)量關(guān)系和位置關(guān)系,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某年5月,我國南方某省A、B兩市遭受嚴(yán)重洪澇災(zāi)害,1.5萬人被迫轉(zhuǎn)移,鄰近縣市C、D獲知A、B兩市分別急需救災(zāi)物資200噸和300噸的消息后,決定調(diào)運物資支援災(zāi)區(qū).已知C市有救災(zāi)物資240噸,D市有救災(zāi)物資260噸,現(xiàn)將這些救災(zāi)物資全部調(diào)往A、B兩市.已知從C市運往A、B兩市的費用分別為每噸20元和25元,從D市運往往A、B兩市的費用別為每噸15元和30元,設(shè)從D市運往B市的救災(zāi)物資為x噸.

(1)請?zhí)顚懴卤?/span>

A(噸)

B(噸)

合計(噸)

C

   

   

240

D

   

x

260

總計(噸)

200

300

500

(2)設(shè)C、D兩市的總運費為w元,求wx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)經(jīng)過搶修,從D市到B市的路況得到了改善,縮短了運輸時間,運費每噸減少m元(m>0),其余路線運費不變.若C、D兩市的總運費的最小值不小于10320元,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實踐:

問題情境:

在數(shù)學(xué)綜合與實踐課上,張老師啟示大家利用直線、線段以及點的運動變換進行探究活動.變換條件如下:如圖 1,直線 ABAC,BC 兩兩相交于 A,B,C 三點,得知△ABC是等邊三角形,點 E 是直線 AC 上一動點(點 E 不與點 AC 重合),點 F 在直線 BC上,連接 BE,EF,使 EF=BE

獨立思考:

1)張老師首先提出了這樣一個問題:如圖 1,當(dāng)E是線段 AC 的中點時,確定線段 AE CF 的數(shù)量關(guān)系,請你直接寫出結(jié)論:AE____ CF(填“>” “<”或“=”).

提出問題:

2)“奮斗”小組受此問題的啟發(fā),提出問題:若點E是線段 AC 上的任意一點,其他條件不變,(1)中的結(jié)論是否成立?該小組認為結(jié)論仍然成立,理由如下:如圖 2,過點 E EDBC,交 AB 于點 D. (請你補充完整證明過程)

拓展延伸:

3)“縝密”小組提出的問題是:動點E的運動位置如圖3,圖4所示,其他條件不變,根據(jù)題意補全圖形,并判斷線段AECF的數(shù)量關(guān)系是否發(fā)生變化? 請你選擇其中一種予以證明.

4)“愛心”小組提出的問題是:若等邊△ABC 的邊長為 ,AE=1,則BF 的長為__________.(請你直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,EAC上一點,且AE=BC,過點AADCA,垂足為A,且AD=AC,ABDE交于點F試判斷線段ABDE的數(shù)量關(guān)系和位置關(guān)系,并說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象在第一象限交于點A(4,2),與y軸的負半軸交于點B,且OB=6.

(1)求函數(shù)y=y=kx+b的解析式;

(2)已知直線ABx軸相交于點C,在第一象限內(nèi),求反比例函數(shù)y=的圖象上一點P,使得SPOC=9.

查看答案和解析>>

同步練習(xí)冊答案