【題目】已知互不相等的實數(shù)m、n,且滿足m2+3m50,n2+3n50,則m2n2+mn+6m的值為( 。

A.14B.14C.10D.10

【答案】B

【解析】

根據(jù)根與系數(shù)的關(guān)系即可求出答案.

解:由題意可知:m、n是方程x2+3x50的兩根,

m+n=﹣3,mn=﹣5,

∴原式=(m+n)(mn)+mn+6m

=﹣3mn)﹣5+6m

=﹣3m+3n+6m5

3m+3n5

3m+n)﹣5

=﹣95

=﹣14,

故選:B

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y(x4)25的頂點坐標和開口方向分別是(  )

A. (4,﹣5),開口向上B. (4,﹣5),開口向下

C. (4,﹣5),開口向上D. (4,﹣5),開口向下

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,已知點E,F(xiàn),G,H分別是四邊形ABCD各邊AB,BC,CD,DA的中點,根據(jù)以下思路可以證明四邊形EFGH是平行四邊形:

(1)如圖2,將圖1中的點C移動至與點E重合的位置,F(xiàn),G,H仍是BC,CD,DA的中點,求證:四邊形CFGH是平行四邊形;

(2)如圖3,在邊長為1的小正方形組成的5×5網(wǎng)格中,點A,C,B都在格點上,在格點上畫出點D,使點C與BC,CD,DA的中點F,G,H組成正方形CFGH;

(3)在(2)條件下求出正方形CFGH的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某國發(fā)生8.1級強烈地震,我國積極組織搶險隊赴地震災區(qū)參與搶險工作,如圖,某探測對在地面A、B兩處均探測出建筑物下方C處由生命跡象,已知探測線與地面的夾角分別是25°和60°,且AB=4米,求該生命跡象所在位置C的深度.(結(jié)果精確到1米,參考數(shù)據(jù):sin25°≈0.4,cos25°≈0,9,tan25°≈0.5,≈1.7)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=﹣x+4與兩坐標軸分別相交于點A,B兩點,點C是線段AB上任意一點,過C分別作CD⊥x軸于點D,CE⊥y軸于點E.雙曲線 與CD,CE分別交于點P,Q兩點,若四邊形ODCE為正方形,且 ,則k的值是( )

A.4
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列語句寫成數(shù)學式子正確的是( )
A.9是81的算術(shù)平方根:
B.±6是36的平方根:
C.5是(﹣5)2的算術(shù)平方根:
D.﹣2是4的負的平方根:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算中,計算結(jié)果正確的是(  )
A.a2a3=a6
B.(a23=a5
C.(a2b)2=a2b2
D.(﹣a)6÷a=a5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,E、F分別是AB、CD的中點.

(1)求證:四邊形EBFD為平行四邊形;

(2)對角線AC分別與DE、BF交于點M、N,求證:△ABN≌△CDM.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC和△CEF均為等腰直角三角形,E在△ABC內(nèi),∠CAE+∠CBE=90°,連接BF.

(1)求證:△CAE∽△CBF.

(2)若BE=1,AE=2,求CE的長.

查看答案和解析>>

同步練習冊答案