【題目】如圖,,點(diǎn)是對(duì)角線上兩點(diǎn),.

(1)求證:四邊形是平行四邊形.

(2).,,的面積.

【答案】1)證明見詳解;(212

【解析】

1)先連接BD,交ACO,由于四邊形ABCD是平行四邊形,易知OB=OD,OA=OC,而AE=CF,根據(jù)等式性質(zhì)易得OE=OF,即可得出結(jié)論.

2)由AE=CFOE=OFEF=2AE=2,得出AE=CF=OE=OF=1AC=4,CE=3,證出△BCE是等腰直角三角形,得出BE=CE=3,得出ABCD的面積=2ABC的面積=2××AC×BE,即可得出結(jié)果.

1)證明:連接BD,交ACO,如圖所示:

∵四邊形ABCD是平行四邊形,

OB=OD,OA=OC

AE=CF,

OA-AE=OC-CF

OE=OF,

∴四邊形BFDE是平行四邊形;

2)解:∵AE=CF,OE=OFEF=2AE=2,

AE=CF=OE=OF=1,

AC=4,CE=3

∵∠ACB=45°,BEAC,

∴△BCE是等腰直角三角形,

BE=CE=3

∵四邊形ABCD是平行四邊形,

ABCD的面積=2ABC的面積=2××AC×BE=4×3=12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形 ABCD 的邊長(zhǎng)為1,其面積為 S1,以CD 為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積記為 S2,,按此規(guī)律繼續(xù)下去,則 S9的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為M(1,0),直線與該二次函數(shù)的圖象交于A,B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(3,-4),B點(diǎn)在y軸上.

(1)求m的值及這個(gè)二次函數(shù)的解析式;

(2)在x軸上找一點(diǎn)Q,使QAB的周長(zhǎng)最小,并求出此時(shí)Q點(diǎn)坐標(biāo);

(3)若P(t,0)是x軸上的一個(gè)動(dòng)點(diǎn),過Px軸的垂線分別與直線AB和二次函數(shù)的圖象交于D、E兩點(diǎn).

①設(shè)線段DE的長(zhǎng)為h,當(dāng)0<t<3時(shí),求ht之間的函數(shù)關(guān)系式;

②若直線AB與拋物線的對(duì)稱軸交點(diǎn)為N,問是否存在一點(diǎn)P,使以M、N、D、E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在正方形ABCD,AB=4,點(diǎn)G是射線AB上的一個(gè)動(dòng)點(diǎn),以DG為邊向右作正方形DGEF,作EH⊥AB于點(diǎn)H.

(1)若點(diǎn)G在點(diǎn)B的右邊.試探索:EHBG的值是否為定值,若是,請(qǐng)求出定值;若不是,請(qǐng)說明理由.

(2)連接EB,在G點(diǎn)的整個(gè)運(yùn)動(dòng)(點(diǎn)G與點(diǎn)A重合除外)過程中,求∠EBH的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線上部分點(diǎn)的橫坐標(biāo),縱坐標(biāo)的對(duì)應(yīng)值如下表:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

小聰觀察上表,得出下面結(jié)論:①拋物線與x軸的一個(gè)交點(diǎn)為(3,0); ②函數(shù)的最大值為6;③拋物線的對(duì)稱軸是④在對(duì)稱軸左側(cè),yx增大而增大.其中正確有( )

A. ①② B. ①③ C. ①②③ D. ①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AB邊為直徑的O經(jīng)過點(diǎn)P,C是O上一點(diǎn),連結(jié)PC交AB于點(diǎn)E,且ACP=60°,PA=PD.

(1)試判斷PD與O的位置關(guān)系,并說明理由;

(2)若點(diǎn)C是弧AB的中點(diǎn),已知AB=4,求CECP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在平面直角坐標(biāo)系xOy中,點(diǎn)A(-4,0),點(diǎn)B在直線y=x+2當(dāng)A、B兩點(diǎn)間的距離最小時(shí),點(diǎn)B的坐標(biāo)是(

A. () B. (,) C. (-3,-1) D. (-3,)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明每天上午9時(shí)騎自行車離開家,15時(shí)回家,他描繪了離家的距與時(shí)間的變化情況.

(1)圖象表示哪兩個(gè)變量的關(guān)系?哪個(gè)是自變量?哪個(gè)是因變量?

(2)10時(shí)和13時(shí),他分別離家多遠(yuǎn)?

(3)他到達(dá)離家最遠(yuǎn)的地方時(shí)什么時(shí)間?離家多遠(yuǎn)?

(4)11時(shí)到12時(shí)他行駛了多少千米?

(5)他由離家最遠(yuǎn)的地方返回的平均速度是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列圖形,它是把一個(gè)三角形分別連接其三邊中點(diǎn),構(gòu)成4個(gè)小三角形,挖去中間的一個(gè)小三角形(如圖1);對(duì)剩下的三個(gè)小三角形再分別重復(fù)以上做法,將這種做法繼續(xù)下去(如圖2,圖3…).觀察規(guī)律解答以下各題:

……

(1)填寫下表:

圖形序號(hào)

挖去三角形的個(gè)數(shù)

1

1

2

1+3

3

1+3+9

4

(2)根據(jù)這個(gè)規(guī)律,求圖n中挖去三角形的個(gè)數(shù)fn(用含n的代數(shù)式表示);

(3)若圖n+1中挖去三角形的個(gè)數(shù)為fn+1,求fn+1-fn

查看答案和解析>>

同步練習(xí)冊(cè)答案