(1)如圖1,在正方形ABCD中,點E、F分別在邊BC、CD上,AE、BF 交于點O,∠AOF=90°.求證:BE=CF.
(2)如圖2,在正方形ABCD中,點E、H、F、G分別在邊AB、BC、CD、DA上,
EF、GH交于點O,∠FOH=90°,EF=4.求GH的長.
(3)已知點E、H、F、G分別在矩形ABCD的邊AB、BC、CD、DA上,EF、GH交于點O,∠FOH=90°,EF=4.直接寫出下列兩題的答案:
①如圖3,矩形ABCD由2個全等的正方形組成,則GH=______;
②如圖4,矩形ABCD由n個全等的正方形組成,則GH=______(用n的代數(shù)式表示).
【答案】分析:(1)關(guān)鍵是證出∠CBF=∠BAE,可利用同角的余角相等得出,從而結(jié)合已知條件,利用SAS可證△ABE≌△BCF,于是BE=CF;
(2)過A作AM∥GH,交BC于M,過B作BN∥EF,交CD于N,AMBN交于點O′,利用平行四邊形的判定,可知四邊形AMHG和四邊形BNFE是?,那么AM=GH,BN=EF,由于∠EOH=90°,結(jié)合平行線的性質(zhì),可知∠AO′N=90°,那么此題就轉(zhuǎn)化成(1),求△BCN≌△ABM即可;
(3)①若是兩個正方形,則GH=2EF=8;②若是n個正方形,那么GH=n•4=4n.
解答:(1)證明:如圖,∵四邊形ABCD為正方形,
∴AB=BC,∠ABC=∠BCD=90°,
∴∠EAB+∠AEB=90°.
∵∠EOB=∠AOF=90°,
∴∠FBC+∠AEB=90°,
∴∠EAB=∠FBC,
∴△ABE≌△BCF,
∴BE=CF;

(2)解:方法1:如圖,過點A作AM∥GH交BC于M,
過點B作BN∥EF交CD于N,AM與BN交于點O′,
則四邊形AMHG和四邊形BNFE均為平行四邊形,
∴EF=BN,GH=AM,
∵∠FOH=90°,AM∥GH,EF∥BN,
∴∠NO′A=90°,
故由(1)得,△ABM≌△BCN,∴AM=BN,
∴GH=EF=4;
方法2:過點F作FM⊥AB于M,過點G作GN⊥BC于N,
得FM=GN,由(1)得,∠HGN=∠EFM,
得△FME≌△GNH,
得FE=GH=4.

(3)①∵是兩個正方形,則GH=2EF=8,②4n.
點評:本題利用了正方形的性質(zhì)、平行四邊形的判定、平行線的性質(zhì)、全等三角形的判定和性質(zhì)等知識,關(guān)鍵是作輔助線,構(gòu)造全等三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

點P是x軸正半軸的一個動點,過點P作x軸的垂線PA交雙曲線y=
1
x
于點A,連接OA.
(1)如圖甲,當(dāng)點P在x軸的正方向上運動時,Rt△AOP的面積大小是否變化?若不變,請求出Rt△AOP的面積;若改變,試說明理由;
(2)如圖乙,在x軸上的點P的右側(cè)有一點D,過點D作x軸的垂線交雙曲線于點B,連接BO交AP于點C,設(shè)△AOP的面積是S1,梯形BCPD的面積為S2,則S1與S2的大小關(guān)系是S1
S2(選填“>”、“<”、“=”);
(3)如圖丙,AO的延長線與雙曲線y=
1
x
的另一個交點為F,F(xiàn)H垂直于x軸,垂足為點H,連接AH,PF,試證明四邊形APFH的面積為一個常數(shù).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知點P是x軸正半軸的一個動點,過點P作x軸的垂線PA交雙曲線y=
1x
于點A,連接OA.
精英家教網(wǎng)
(1)如圖甲,當(dāng)點P在x軸的正方向上運動時,Rt△AOP的面積大小是否變化答:
 
(請?zhí)睢白兓被颉安蛔兓保?BR>若不變,請求出Rt△AOP的面積=
 
;若改變,試說明理由(自行思索,不必作答);
(2)如圖乙,在x軸上的點P的右側(cè)有一點D,過點D作x軸的垂線交雙曲線于點B,連接BO交AP于C,設(shè)△AOP的面積是S1,梯形BCPD的面積為S2,則S1與S2的大小關(guān)系是S1
 
S2(請?zhí)睢埃尽薄ⅰ埃肌被颉?”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•深圳)如圖1,直線AB過點A(m,0),B(0,n),且m+n=20(其中m>0,n>0).
(1)m為何值時,△OAB面積最大?最大值是多少?
(2)如圖2,在(1)的條件下,函數(shù)y=
k
x
(k>0)
的圖象與直線AB相交于C、D兩點,若S△OCA=
1
8
S△OCD
,求k的值.
(3)在(2)的條件下,將△OCD以每秒1個單位的速度沿x軸的正方向平移,如圖3,設(shè)它與△OAB的重疊部分面積為S,請求出S與運動時間t(秒)的函數(shù)關(guān)系式(0<t<10).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•錫山區(qū)一模)如圖1,在平面直角坐標(biāo)系xOy中,點A,B坐標(biāo)分別為(8,4),(0,4),線段CD在于x軸上,CD=3,點C從原點出發(fā)沿x軸正方向以每秒1個單位長度向右平移,點D隨著點C同時同速同方向運動,過點D作x軸的垂線交線段AB于點E,交OA于點G,連接CE交OA于點F.設(shè)運動時間為t,當(dāng)E點到達A點時,停止所有運動.

(1)求線段CE的長;
(2)記S為Rt△CDE與△ABO的重疊部分面積,試寫出S關(guān)于t函數(shù)關(guān)系式及t的取值范圍;
(3)如圖2,連接DF,
①當(dāng)t取何值時,以C,F(xiàn),D為頂點的三角形為等腰三角形?
②直接寫出△CDF的外接圓與OA相切時t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在向紅星鎮(zhèn)居民介紹王家莊位置的時候,我們可以這樣說:如圖1,在以紅星鎮(zhèn)為原點,正東方向為x軸正方向,正北方向為y軸正方向的平面直角坐標(biāo)系(1單位長度表示的實際距離為1km)中,王家莊的坐標(biāo)為(5,5);也可以說,王家莊在紅星鎮(zhèn)東北方向
50
km的地方.

還有一種方法廣泛應(yīng)用于航海、航空、氣象、軍事等領(lǐng)域.如圖2:在紅星鎮(zhèn)所建的雷達站O的雷達顯示屏上,把周角每15°分成一份,正東方向為0°,相鄰兩圓之間的距離為1個單位長度(1單位長度表示的實際距離為1km),現(xiàn)發(fā)現(xiàn)2個目標(biāo),我們約定用(10,15°)表示點M在雷達顯示器上的坐標(biāo),則:
(1)點N可表示為
(8,135°)
(8,135°)
;王家莊位置可表示為
50
,45°)
50
,45°)
;點N關(guān)于雷達站點0成中心對稱的點P的坐標(biāo)為
(8,315°)
(8,315°)
;
(2)S△OMP=
20
2
20
2
;
(3)若有一家大型超市A在圖中(4,30°)的地方,請直接標(biāo)出點A,并將超市A與雷達站O連接,現(xiàn)準(zhǔn)備在雷達站周圍建立便民服務(wù)店B,使得△ABO為底角30°的等腰三角形,請直接寫出B點在雷達顯示屏上的坐標(biāo).
(4,270°)或(4,150°)或(4
3
,0°)或(4
3
,60°).
(4,270°)或(4,150°)或(4
3
,0°)或(4
3
,60°).

查看答案和解析>>

同步練習(xí)冊答案