已知:將函數(shù)數(shù)學(xué)公式的圖象向上平移2個(gè)單位,得到一個(gè)新的函數(shù)圖象.
(1)寫(xiě)出這個(gè)新的函數(shù)的解析式;
(2)若平移前后的這兩個(gè)函數(shù)圖象分別與y軸交于O,A兩點(diǎn),與直線數(shù)學(xué)公式交于C,B兩點(diǎn).試判斷以A,B,C,O四點(diǎn)為頂點(diǎn)四邊形形狀,并說(shuō)明理由;
(3)若(2)中的四邊形(不包括邊界)始終覆蓋著二次函數(shù)數(shù)學(xué)公式的圖象一部分,求滿足條件的實(shí)數(shù)b的取值范圍.

解:(1)y=x+2.

(2)四邊形AOCB為菱形;理由如下:
由題意可得:AB∥CO,BC∥AO,AO=2,
∴四邊形AOCB為平行四邊形,易得A(0,2),B(-,1);
由勾股定理可得:AB=2,
∴AB=AO,故平行四邊形AOCB是菱形.


(3)二次函數(shù)y=x2-2bx+b2+化為頂點(diǎn)式為:y=(x-b)2+,
∴拋物線頂點(diǎn)在直線y=上移動(dòng);
假設(shè)四邊形的邊界可以覆蓋到二次函數(shù),則B點(diǎn)和A點(diǎn)分別是二次函數(shù)與四邊形接觸的邊界點(diǎn);
將B(-,1)代入二次函數(shù),
解得b=--,b=-+(不合題意,舍去);
將A(0,2)代入二次函數(shù),
解得b=,b=-(不合題意,舍去);
所以實(shí)數(shù)b的取值范圍:--<b<
分析:(1)根據(jù)“上加下減”的平移規(guī)律即可求得平移后的直線解析式.
(2)根據(jù)(1)題所得直線解析式,可求得A點(diǎn)坐標(biāo);易求得B、C的坐標(biāo),由于四邊形OABC的對(duì)邊都平行,因此四邊形OABC首先是個(gè)平行四邊形,根據(jù)A、B的坐標(biāo)可求得AB=2=OA,由此可證得四邊形OABC是菱形.
(3)將所給的拋物線解析式化為頂點(diǎn)式,可得:y=(x-b)2+,由于b值不確定,因此該函數(shù)的頂點(diǎn)在直線y=上左右移動(dòng);求四邊形覆蓋二次函數(shù)時(shí)b的取值范圍,可考慮兩種情況:
①當(dāng)拋物線對(duì)稱軸右側(cè)圖象經(jīng)過(guò)點(diǎn)B時(shí),b的值;
②當(dāng)拋物線對(duì)稱軸左側(cè)圖象經(jīng)過(guò)點(diǎn)A時(shí),b的值;
聯(lián)立上述兩種情況下b的取值即可求得實(shí)數(shù)b的取值范圍.
點(diǎn)評(píng):此題主要考查了函數(shù)圖象的平移、平行四邊形及菱形的判定、函數(shù)圖象上點(diǎn)的坐標(biāo)意義等知識(shí),(3)題中,能夠正確的判斷出拋物線的移動(dòng)范圍是解決問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)的圖象以A(-1,4)為頂點(diǎn),且過(guò)點(diǎn)B(2,-5)
①求該函數(shù)的關(guān)系式;
②求該函數(shù)圖象與坐標(biāo)軸的交點(diǎn)坐標(biāo);
③將該函數(shù)圖象向右平移,當(dāng)圖象經(jīng)過(guò)原點(diǎn)時(shí),A、B兩點(diǎn)隨圖象移至A′、B′,求△O A′B′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)的圖象經(jīng)過(guò)A(2,0)、C(0,12)兩點(diǎn),且對(duì)稱軸為直線x=4.設(shè)頂點(diǎn)為點(diǎn)P,與x軸的另一交點(diǎn)為點(diǎn)B.
(1)求二次函數(shù)的解析式及頂點(diǎn)P的坐標(biāo);
(2)如圖1,在直線 y=2x上是否存在點(diǎn)D,使四邊形OPBD為等腰梯形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,點(diǎn)M是線段OP上的一個(gè)動(dòng)點(diǎn)(O、P兩點(diǎn)除外),以每秒
2
個(gè)單位長(zhǎng)度的速度由點(diǎn)P向點(diǎn)O 運(yùn)動(dòng),過(guò)點(diǎn)M作直線MN∥x軸,交PB于點(diǎn)N.將△PMN沿直線MN對(duì)折,得到△P1MN.在動(dòng)點(diǎn)M的運(yùn)動(dòng)過(guò)程中,設(shè)△P1MN與梯形OMNB的重疊部分的面積為S,運(yùn)動(dòng)時(shí)間為t秒.求S關(guān)于t的函數(shù)關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•高新區(qū)一模)已知二次函數(shù)的圖象經(jīng)過(guò)A(2,0)、C(0,-12)兩點(diǎn),且對(duì)稱軸為直線x=4,設(shè)頂點(diǎn)為點(diǎn)P,與x軸的另一交點(diǎn)為點(diǎn)B.
(1)求二次函數(shù)的解析式及頂點(diǎn)P的坐標(biāo);
(2)如圖1,在直線y=-2x上是否存在點(diǎn)D,使四邊形OPBD為等腰梯形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,點(diǎn)M是線段OP上的一個(gè)動(dòng)點(diǎn)(O、P兩點(diǎn)除外),以每秒
2
個(gè)單位長(zhǎng)度的速度由點(diǎn)P向點(diǎn)O運(yùn)動(dòng),過(guò)點(diǎn)M作直線MN∥x軸,交PB于點(diǎn)N.將△PMN沿直線MN對(duì)折,得到△P1MN.在動(dòng)點(diǎn)M的運(yùn)動(dòng)過(guò)程中,設(shè)△P1MN與梯形OMNB的重疊部分的面積為S,運(yùn)動(dòng)時(shí)間為t秒.問(wèn)S存在最大值嗎?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示.
(1)求二次函數(shù)的解析式;
(2)將已知二次函數(shù)的圖象向右平移3個(gè)單位,再向下平移2個(gè)單位后的函數(shù)解析式為
y=-x2+4x-2
y=-x2+4x-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)y=ax2+bx+c的圖象如圖所示.
(1)求二次函數(shù)的解析式;
(2)將已知二次函數(shù)的圖象向右平移3個(gè)單位,再向下平移2個(gè)單位后的函數(shù)解析式為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案