【題目】如圖,已知四邊形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四邊形ABCD的面積.

【答案】36.

【解析】

試題分析:連接AC,在直角三角形ABC中,由AB及BC的長,利用勾股定理求出AC的長,再由AD及CD的長,利用勾股定理的逆定理得到三角形ACD為直角三角形,根據(jù)四邊形ABCD的面積=直角三角形ABC的面積+直角三角形ACD的面積,即可求出四邊形的面積.

解:連接AC,如圖所示:

∵∠B=90°,

∴△ABC為直角三角形,

又∵AB=3,BC=4,

∴根據(jù)勾股定理得:AC==5,

又∵CD=12,AD=13,

∴AD2=132=169,CD2+AC2=122+52=144+25=169,

∴CD2+AC2=AD2,

∴△ACD為直角三角形,∠ACD=90°,

則S四邊形ABCD=S△ABC+S△ACD=ABBC+ACCD=×3×4+×5×12=36.

故四邊形ABCD的面積是36.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知直線l1l2,直線l3和直線l1l2交于點(diǎn)CD,點(diǎn)P是直線l3上一動(dòng)點(diǎn)

1)如圖1,當(dāng)點(diǎn)P在線段CD上運(yùn)動(dòng)時(shí),PAC,APBPBD之間存在什么數(shù)量關(guān)系?請你猜想結(jié)論并說明理由.

2)當(dāng)點(diǎn)PCD點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí)(P點(diǎn)與點(diǎn)C、D不重合,如圖2和圖3),上述(1)中的結(jié)論是否還成立?若不成立,請直接寫出PAC,APB,PBD之間的數(shù)量關(guān)系,不必寫理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場將進(jìn)價(jià)為4000元的電視以4400元售出,平均每天能售出6臺(tái).為了配合國家財(cái)政推出的“節(jié)能家電補(bǔ)貼政策”的實(shí)施,商場決定采取適當(dāng)?shù)慕祪r(jià)措施,調(diào)查發(fā)現(xiàn):這種電視的售價(jià)每降價(jià)50元,平均每天就能多售出3臺(tái).
(1)現(xiàn)設(shè)每臺(tái)電視降價(jià)x元,商場每天銷售這種電視的利潤是y元,請寫出y與x之間的函數(shù)表達(dá)式.(不要求寫出自變量的取值范圍)
(2)每臺(tái)電視降價(jià)多少元時(shí),商場每天銷售這種電視的利潤最高?最高利潤是多少?
(3)商場要想在這種電視銷售中每天盈利3600元,同時(shí)又要使百姓得到更多實(shí)惠,每臺(tái)電視應(yīng)降價(jià)多少元?根據(jù)以上的結(jié)論,請你直接寫出售價(jià)在什么范圍時(shí),每個(gè)月的利潤不低于3600元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠ABC的兩邊分別平行于∠DEF的兩條邊,且∠ABC=45°.

圖1      圖2

(1)圖1中:∠DEF=_________,圖2中:∠DEF=_________;

(2)請觀察圖1、圖2中∠DEF分別與∠ABC有怎樣的關(guān)系,請你歸納出一個(gè)命題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,正方形A′B′C′D′的頂點(diǎn)A′與點(diǎn)O重合,A′B′BC于點(diǎn)EA′D′CD于點(diǎn)F

1)求證:OE=OF;

2)若正方形ABCD的對(duì)角線長為4,求兩個(gè)正方形重疊部分的面積為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計(jì)劃撥款9萬元從廠家購進(jìn)50臺(tái)電視機(jī),已知該廠家生產(chǎn)三種不同型號(hào)的電視機(jī),出廠價(jià)分別為:甲種每臺(tái)1500元,乙種每臺(tái)2100元,丙種每臺(tái)2500元,若商場同時(shí)購進(jìn)其中兩種不同型號(hào)電視機(jī)共50臺(tái),用去9萬元,請你研究一下商場的進(jìn)貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我縣中小學(xué)讀書活動(dòng)中,某校對(duì)部分學(xué)生做了一次主題為我最喜愛的圖書的調(diào)查活動(dòng),將圖書分為甲、乙、丙、丁四類,學(xué)生可根據(jù)自己的愛好任選其中一類,學(xué)校根據(jù)調(diào)查情況進(jìn)行了統(tǒng)計(jì),并繪制了不完整條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

請你結(jié)合圖中的信息,解答下列問題(其中(1)、(2)直接填答案即可);

(1)本次調(diào)查了 名學(xué)生;

(2)被調(diào)查的學(xué)生中,最喜愛丁類圖書的有  人,最喜愛甲類圖書的人數(shù)被調(diào)查人數(shù)的  %.

(3)在最喜愛丙類圖書的學(xué)生中,女生人數(shù)是男生人數(shù)的1.5倍,若這所學(xué)校約有學(xué)生1800人,請你估計(jì)該校最喜愛丙類圖書的女生和男生分別有多少人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(a,0),B(n,0)且a、n滿足|a+2|+=0,現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移4個(gè)單位,再向右平移3個(gè)單位,分別得到點(diǎn)A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,CD.

(1)求點(diǎn)C,D的坐標(biāo)及四邊形OBDC的面積;

(2)如圖2,若 點(diǎn)P是線段BD上的一個(gè)動(dòng)點(diǎn),連接PC,PO,當(dāng)點(diǎn)PBD上移動(dòng)時(shí)(不與B,D重合)的值是否發(fā)生變化,并說明理由.

(3)在四邊形OBDC內(nèi)是否存在一點(diǎn)P,連接PO,PB,PC,PD,使SPCD=SPBD; SPOB:SPOC=1?若存在這樣一點(diǎn),求出點(diǎn)P的坐標(biāo),若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)要求回答問題

(1)如圖,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.
①當(dāng)點(diǎn)D在AC上時(shí),如圖1,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?直接寫出你猜想的結(jié)論;
②將圖1中的△ADE繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α角(0°<α<90°),如圖2,線段BD、CE有怎樣的數(shù)量關(guān)系和位置關(guān)系?請說明理由.

(2)當(dāng)△ABC和△ADE滿足下面甲、乙、丙中的哪個(gè)條件時(shí),使線段BD、CE在(1)中的位置關(guān)系仍然成立?不必說明理由.
甲:AB:AC=AD:AE=1,∠BAC=∠DAE≠90°;
乙:AB:AC=AD:AE≠1,∠BAC=∠DAE=90°;
丙:AB:AC=AD:AE≠1,∠BAC=∠DAE≠90°.

查看答案和解析>>

同步練習(xí)冊答案