【題目】已知二次函數(shù)(a>0)的圖象與x軸的負半軸和正半軸分別交于A、B兩點,與y軸交于點C,它的頂點為P,直線CP與過點B且垂直于x軸的直線交于點D,且CP:PD=2:3

(1)求A、B兩點的坐標;

(2)若tan∠PDB=,求這個二次函數(shù)的關(guān)系式.

【答案】(1)A(,0);(2)

【解析】

試題分析:(1)過點P作PE⊥x軸于點E,∵,∴該二次函數(shù)的對稱軸為:x=1,∴OE=1

∵OC∥BD,∴CP:PD=OE:EB,∴OE:EB=2:3,∴EB=,∴OB=OE+EB=,∴B(,0)

∵A與B關(guān)于直線x=1對稱,∴A(,0);

(2)過點C作CF⊥BD于點F,交PE于點G,令x=1代入,∴y=c﹣a,令x=0代入,∴y=c,∴PG=a,∵CF=OB=,∴tan∠PDB=,∴FD=2,∵PG∥BD,△CPG∽△CDF,∴∴PG=,∴a=,∴,把A(,0)代入,∴解得:c=﹣1,∴該二次函數(shù)解析式為:

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】P2m﹣4,3 )在第二象限,則m的取值范圍是(  )

A. m2 B. m2 C. m≥﹣2 D. m≤2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OABC是一張放在平面直角坐標系中的長方形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,求D、E兩點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線經(jīng)過點(﹣1,8)并與x軸交于點A,B兩點,且點B坐標為(3,0).

(1)求拋物線的解析式;

(2)若拋物線與y軸交于點C,頂點為點P,求CPB的面積.

注:拋物線(a0)的頂點坐標是(,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸的原點為O,如圖所示,點A表示﹣2,點B表示3,請回答下列問題:
(1)數(shù)軸是什么圖形?數(shù)軸在原點右邊的部分(包括原點)是什么圖形?數(shù)軸上表示不小于﹣2,且不大于3的部分是什么圖形?請你分別給它們?nèi)∫粋合適的名字;
(2)請你在射線AO上再標上一個點C(不與A點重合),那么表示點C的值x的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,射線PA切⊙O于點A,連接PO.

(1)在PO的上方作射線PC,使∠OPC=∠OPA(用尺規(guī)在原圖中作,保留痕跡,不寫作法),并證明PC是⊙O的切線;

(2)在(1)的條件下,若PC切⊙O于點B,AB=AP=4,求的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若a=2,b=﹣1,則a+2b+3的值為(
A.﹣1
B.3
C.6
D.5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】初三年某班共50名學生參加體育測試,全班學生成績合格率為94%,則不合格的人數(shù)有___________人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某陶瓷商,為了促銷決定賣一只茶壺,贈一只茶杯。某人共付款162元,買得茶壺茶杯共36只,已知每只茶壺15元,每只茶杯3元,問其中茶壺、茶杯各多少只?

查看答案和解析>>

同步練習冊答案