【題目】已知一次函數(shù)y=kx+3的圖象經(jīng)過(guò)點(diǎn)(1,4).
(1)求這個(gè)一次函數(shù)的表達(dá)式;
(2)求關(guān)于x的不等式kx+3≤6的解集.
【答案】
(1)解:把點(diǎn)(1,4)的坐標(biāo)代入y=kx+3,
得4=k+3,
解得k=1,
∴這個(gè)一次函數(shù)的表達(dá)式為y=x+3 。
(2)解:∵k=1,
∴x+3≤6,
解得x≤3
,即不等式kx+3≤6的解集為x≤3
【解析】(1)用待定系數(shù)法把點(diǎn)(1,4)的坐標(biāo)代入y=kx+3,得到一個(gè)關(guān)于K的方程,求解得出k的值,進(jìn)而求出函數(shù)解析式;
(2)首先把k=1代入kx+3≤6,得到一個(gè)關(guān)于x的一元一次不等式,求解即可。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點(diǎn)O在邊AB上,以點(diǎn)O為圓心,OA為半徑的圓經(jīng)過(guò)點(diǎn)C,過(guò)點(diǎn)C作直線(xiàn)MN,使∠BCM=2∠A.
(1)判斷直線(xiàn)MN與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△OAB是邊長(zhǎng)為2的等邊三角形,過(guò)點(diǎn)A的直線(xiàn)
(1)求點(diǎn)E的坐標(biāo);
(2)求證OA⊥AE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】坐標(biāo)平面內(nèi)的點(diǎn)P(m,﹣2)與點(diǎn)Q(3,n)關(guān)于原點(diǎn)對(duì)稱(chēng),則m+n= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,A是的中點(diǎn),AE⊥AC于A,與⊙O及CB的延長(zhǎng)線(xiàn)交于點(diǎn)F、E,且.
(1)求證:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)方形中, , ,點(diǎn)從點(diǎn)出發(fā),以的速度沿向點(diǎn)運(yùn)動(dòng),設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒:
(1)_________ .(用的代數(shù)式表示)
(2)當(dāng)為何值時(shí),
(3)當(dāng)點(diǎn)從點(diǎn)開(kāi)始運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以vcm/s的速度沿CD向點(diǎn)D運(yùn)動(dòng),是否存在這樣的v值,使得△ABP與△PQC全等?若存在,請(qǐng)求出v的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若“※”是新規(guī)定的某種運(yùn)算符號(hào),得x※y=x2+y,則(-1)※k=4中k的值為( )
A. -3 B. 2 C. -1 D. 3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com