【題目】解方程與方程組
(1)解方程:x2﹣6x﹣6=0;
(2)解不等式組:

【答案】
(1)解:a=1,b=﹣6,c=﹣6,

則△=b2﹣4ac=36+24=40>0,

則x= =3±

則x1=3+ ,x2=3﹣ ;


(2)解: ,

解①得:x≤1,

解②得:x>﹣2,

則不等式組的解集是:﹣2<x≤1.


【解析】(1)利用求根公式即可直接求解;(2)首先解每個不等式,兩個不等式的解集的公共部分就是不等式組的解集.
【考點(diǎn)精析】本題主要考查了一元一次不等式組的解法的相關(guān)知識點(diǎn),需要掌握解法:①分別求出這個不等式組中各個不等式的解集;②利用數(shù)軸表示出各個不等式的解集;③找出公共部分;④用不等式表示出這個不等式組的解集.如果這些不等式的解集的沒有公共部分,則這個不等式組無解 ( 此時也稱這個不等式組的解集為空集 )才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】反比例函數(shù)y= (x>0)的圖像經(jīng)過線段OA的端點(diǎn)A,O為原點(diǎn),作AB⊥x軸于點(diǎn)B,點(diǎn)B的坐標(biāo)為(2,0),tan∠AOB= ,將線段AB沿x軸正方向平移到線段DC的位置,反比例函數(shù)y= (x>0)的圖像恰好經(jīng)過DC的中點(diǎn)E.

(1)求k的值和直線AE的函數(shù)表達(dá)式;
(2)若直線AE與x軸交于點(diǎn)M、與y軸交于點(diǎn)N,請你探索線段AN與線段ME的大小關(guān)系,寫出你的結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠分發(fā)年終獎金,具體金額和人數(shù)如下表所示,則下列對這組數(shù)據(jù)的說法中不正確的是(

數(shù)

1

3

5

70

10

8

3

金額(元)

200000

150000

80000

15000

10000

8000

5000


A.極差是195000
B.中位數(shù)是15000
C.眾數(shù)是15000
D.平均數(shù)是15000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明有5張寫著不同數(shù)字的卡片,請你按要求抽出卡片,完成下列問題:

(1)從中取出2張卡片,使這2張卡片上數(shù)字的乘積最大,乘積的最大值是   ;

(2)從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,則商的最小值是   ;

(3)從中取出4張卡片.用學(xué)過的計(jì)算方法.使計(jì)算結(jié)果為24,請寫出這個運(yùn)算式.(至少寫出兩個)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義一個新的運(yùn)算:a⊕b= ,則運(yùn)算x⊕2的最小值為(
A.﹣3
B.﹣2
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】文昌某校準(zhǔn)備組織學(xué)生及學(xué)生家長到三亞進(jìn)行社會實(shí)踐,為了便于管理,所有人員必須乘坐在同一列火車上;根據(jù)報(bào)名人數(shù),若都買一等座單程火車票需17010元,若都買二等座單程火車票且花錢最少,則需11220元;已知學(xué)生家長與教師的人數(shù)之比為2:1,文昌到三亞的火車票價格(部分)如下表所示:

運(yùn)行區(qū)間

公布票價

學(xué)生票

上車站

下車站

一等座

二等座

二等座

文昌

三亞

81(元)

68(元)

51(元)


(1)參加社會實(shí)踐的老師、家長與學(xué)生各有多少人?
(2)由于各種原因,二等座火車票單程只能買x張(x小于參加社會實(shí)踐的人數(shù)),其余的須買一等座火車票,在保證每位參與人員都有座位坐的前提下,請你設(shè)計(jì)最經(jīng)濟(jì)的購票方案,并寫出購買火車票的總費(fèi)用(單程)y與x之間的函數(shù)關(guān)系式.
(3)請你做一個預(yù)算,按第(2)小題中的購票方案,購買一個單程火車票至少要花多少錢?最多要花多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,設(shè)點(diǎn)P到原點(diǎn)O的距離為ρ,OP與x軸正方向的交角為a,則用[ρ,a]表示點(diǎn)P的極坐標(biāo),例如:點(diǎn)P的坐標(biāo)為(1,1),則其極坐標(biāo)為[ ,45°].若點(diǎn)Q的極坐標(biāo)為[4,120°],則點(diǎn)Q的平面坐標(biāo)為(
A.(﹣2,﹣2
B.(2,﹣2
C.(﹣2 ,﹣2)
D.(﹣4,﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a>0)圖象的頂點(diǎn)為D,其圖象與x軸的交點(diǎn)A、B的橫坐標(biāo)分別為﹣1和3,則下列結(jié)論正確的是( 。

A.2a﹣b=0
B.a+b+c>0
C.3a﹣c=0
D.當(dāng)a= 時,△ABD是等腰直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把橫縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“整點(diǎn)”.

(1)直接寫出函數(shù)y= 圖象上的所有“整點(diǎn)”A1 , A2 , A3 , …的坐標(biāo);
(2)在(1)的所有整點(diǎn)中任取兩點(diǎn),用樹狀圖或列表法求出這兩點(diǎn)關(guān)于原點(diǎn)對稱的概率.

查看答案和解析>>

同步練習(xí)冊答案