【題目】如圖1,在ABCD中,∠D=45°,E為BC上一點(diǎn),連接AC,AE,
(1)若AB=2,AE=4,求BE的長(zhǎng);
(2)如圖2,過C作CM⊥AD于M,F為AE上一點(diǎn),CA=CF,且∠ACF=∠BAE,求證:AF+AB=AM.
【答案】(1)2-2;(2)見解析
【解析】
(1)如圖(1),過A作AH⊥BC于H,解直角三角形即可得到結(jié)論;
(2)如圖(2),在AM上截取MN=MC,在△ACF內(nèi)以AF為底邊作等腰直角三角形AFP,連接CP,根據(jù)平行線的性質(zhì)函數(shù)三角形的內(nèi)角和得到∠CAN=∠PAC,求得∠APC=∠FPC==135°=∠ANC,根據(jù)全等三角形的性質(zhì)得到AP=AN,于是得到結(jié)論.
解:(1)如圖(1),過A作AH⊥BC于H,
在ABCD中,∠D=∠B=45°,AB=2,
∴AH=BH=2,
∵AE=4,
∴EH==2,
∴BE=BH-EH=2-2;
(2)如圖(2),在AM上截取MN=MC,在△ACF內(nèi)以AF為底邊作等腰直角三角形AFP,連接CP,
∵∠AFC+∠FAC+∠ACF=180°,∠B+∠FAC+∠BAF+∠CAN=180°,
∴∠AFC=∠B+∠CAN=45°+∠CAN,
∵∠FAC=∠FAP+∠PAC=45°+∠PAC,∴∠FAC=∠∠AFC,
∴∠CAN=∠PAC,
∵∠APC=∠FPC==135°=∠ANC,
∴△APC≌△ANC(AAS),
∴AP=AN,
∵AM=AN+MN,
∴AM=AN+MN=AF+CD=AF+AB,
即AF+AB=AM.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求證:相似三角形對(duì)應(yīng)角的角平分線之比等于相似比.要求:
①分別在給出的△ABC與△DEF中用尺規(guī)作出一組對(duì)應(yīng)角的平分線,不寫作法,保留作圖痕跡;
②在完成作圖的基礎(chǔ)上,寫出已知、求證,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解方程
(1)4x2﹣9=0;
(2)3x2﹣4x﹣1=0;
(3)x2﹣2x﹣3=0(用配方法);
(4)2(x﹣3)2+x(x﹣3)=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題8分)已知二次函數(shù)y=ax2+bx+c過點(diǎn)A(1,0),B(﹣3,0),C(0,﹣3)
(1)求此二次函數(shù)的解析式;
(2)在拋物線上存在一點(diǎn)P使△ABP的面積為6,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=ax2﹣2x+1和y=ax+a(a是常數(shù),且a≠0)在同一直角坐標(biāo)系中的圖象可能是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,點(diǎn)A(2,3),B(3,0),C(m,n)其中m>0,若以O,A,B,C為頂點(diǎn)的四邊形是平行四邊形,則點(diǎn)C的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)E在△ABC的邊AB上,∠C=90°,∠BAC的平分線交BC于點(diǎn)D,且D在以AE為直徑的⊙O上.
(1)求證:BC是⊙O的切線;
(2)已知∠B=30°,CD=4,求線段AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】4件同型號(hào)的產(chǎn)品中,有1件不合格品和3件合格品.
(1)從這4件產(chǎn)品中隨機(jī)抽取1件進(jìn)行檢測(cè),直接寫出抽到的是不合格品的概率;
(2)從這4件產(chǎn)品中隨機(jī)抽取2件進(jìn)行檢測(cè),請(qǐng)用列表法或樹狀圖法,求抽到的都是合格品的概率;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點(diǎn)D,點(diǎn)E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度數(shù);
(2)若OC=3,OA=5,求AB的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com