【題目】如圖,ABC的角平分線BD、CE相交于點P.

(1)如果A=70°,求BPC的度數(shù);

(2)如圖,過P點作直線MNBC,分別交AB和AC于點M和N,試求MPB+NPC的度數(shù)(用含A的代數(shù)式表示);

在(2)的條件下,將直線MN繞點P旋轉(zhuǎn).

)當直線MN與AB、AC的交點仍分別在線段AB和AC上時,如圖,試探索MPB、NPC、A三者之間的數(shù)量關(guān)系,并說明你的理由;

)當直線MN與AB的交點仍在線段AB上,而與AC的交點在AC的延長線上時,如圖,試問()中MPB、NPC、A三者之間的數(shù)量關(guān)系是否仍然成立?若成立,請說明你的理由;若不成立,請給出MPB、NPC、A三者之間的數(shù)量關(guān)系,并說明你的理由.

【答案】(1)125°;(2)MPB+NPC=90°-A;(3)MPB+NPC= 90°-A,MPB-NPC=90°-A.

【解析】

試題(1)由三角形內(nèi)角和定理可知ABC+ACB=180°-A,由角平分線的性質(zhì)可知及三角形內(nèi)角和定理可求出BPC的度數(shù);

(2)利用平行線的性質(zhì)求解或先說明BPC=90°+A;

(3)()先說明BPC=90°+A,則MPB+NPC=180°-BPC=180°-(90°+A)= 90°-A;()不成立,MPB-NPC=90°-A.理由:由圖可知MPB+BPC-NPC=180°,由()知:BPC=90°+A,因此MPB-NPC=180°-BPC=180°-(90°+A)= 90°-A.

試題解析::(1)ABC中,A+B+ACB=180°,

∵∠A=70°

∴∠ABC+ACB=110°,

∵∠1=ABC,

2=ACB,

∴∠1+2=ABC+ACB)

=×110°=55°

∴∠BPC=180°-(1+2)=180°-55°=125°;

(2)由(1)可證BPC=90°+A,

MPB+NPC=180°-BPC=180°-(90°+A)=90°-A;

(3)(MPB+NPC= 90°-A.

理由:先說明BPC=90°+A,則MPB+NPC=180°-BPC=180°-(90°+A)= 90°-A;

)不成立(1分),MPB-NPC=90°-A(1分).

理由:由圖可知MPB+BPC-NPC=180°,由()知:BPC=90°+A,

MPB-NPC=180°-BPC=180°-(90°+A)= 90°-A.

考點: (1)平行線的性質(zhì);2.角平分線的性質(zhì);3.三角形內(nèi)角和.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一只跳蚤在第一象限及x軸、y軸上跳動,第一秒它從原點跳動到點(0,1),第二秒它從點(0,1)跳到點(1,1),然后接著按圖中箭頭所示方向跳動[(0,0)→(0,1)→(1,1)→(10)→…],每秒跳動一個單位長度,那么30秒后跳蚤所在位置的坐標是___

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形ABCD中,AB6,第1次平移將長方形ABCD沿AB的方向向右平移5個單位,得到長方形A1B1C1D1,第2次平移將長方形A1B1C1D1沿A1B1的方向向右平移5個單位,得到長方形A2B2C2D2,以此類推,第n次平移將長方形An1Bn1Cn1Dn1沿An1Bn1的方向向右平移5個單位,得到長方形AnBnCnDnn2),則ABn長為

A. 5n6B. 5n1C. 5n4D. 5n3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形的內(nèi)切圓的切點將該圓周分為5:9:10三條弧,則此三角形的最小的內(nèi)角為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】超越公司將某品牌農(nóng)副產(chǎn)品運往新時代市場進行銷售,記汽車行駛時為t小時,平均速度為v千米/小時(汽車行駛速度不超過100千米/小時).根據(jù)經(jīng)驗,v,t的一組對應(yīng)值如下表:

v(千米/小時)

75

80

85

90

95

t(小時)

4.00

3.75

3.53

3.33

3.16

1)根據(jù)表中的數(shù)據(jù),求出平均速度v(千米/小時)關(guān)于行駛時間t(小時)的函數(shù)表達式;

2)汽車上午730從超越公司出發(fā),能否在上午1000之前到達新時代市場?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料,回答問題
一艘輪船以20海里/時的速度由西向東航行,途中接到臺風(fēng)警報,臺風(fēng)中心正以40海里/時的速度由南向北移動,距臺風(fēng)中心20 海里的圓形區(qū)域(包括邊界)都屬臺風(fēng)區(qū),當輪船到A處時,測得臺風(fēng)中心移到位于點A正南方向B處,且AB=100海里.

(1)若這艘輪船自A處按原速度和方向繼續(xù)航行,在途中會不會遇到臺風(fēng)?若會,試求輪船最初遇到臺風(fēng)的時間;若不會,說明理由;
(2)現(xiàn)輪船自A處立即提高船速,向位于北偏東60°方向,相距60海里的D港駛?cè),為使臺風(fēng)到來之前,到達D港,問船速至少應(yīng)提高多少(提高的船速取整數(shù), ≈3.6)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,四邊形ABCD四條邊上的中點分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點四邊形).

(1)四邊形EFGH的形狀是_____,證明你的結(jié)論;

(2)當四邊形ABCD的對角線滿足_____條件時,四邊形EFGH是矩形(不證明)

(3)你學(xué)過的哪種特殊四邊形的中點四邊形是矩形?_____(不證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在函數(shù)y= (x>0)的圖象上,且OA=4,過點A作AB⊥x軸于點B,則△ABO的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將△ABC沿著某一方向平移一定的距離得到△MNL,則下列結(jié)論中正確的有(  )

AMBN;AM=BN;BC=ML;④∠ACB=MNL。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案