【題目】下列圖形:①平行四邊形;②菱形;③圓;④線段;⑤等邊三角形;⑥直角三角形,是中心對稱圖形的有(  )

A. 1B. 2C. 3D. 4

【答案】D

【解析】

根據(jù)中心對稱圖形的概念求解.

中心對稱圖形有:平行四邊形、菱形、圓、線段,共4種,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知方程x22m21x+3m0的兩個根是互為相反數(shù),則m的值是( 。

A. m±1B. m=﹣1C. m1D. m0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形的兩邊長分別為5cm2cm,則該等腰三角形的周長是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】勾股定理神秘而美妙,它的證法多樣,其巧妙各有不同,其中的“面積法”給了小聰以靈感,他驚喜的發(fā)現(xiàn),當(dāng)兩個全等的直角三角形如圖1或圖2擺放時,都可以用“面積法”來證明,下面是小聰利用圖1證明勾股定理的過程:
將兩個全等的直角三角形按圖1所示擺放,其中∠DAB=90°,求證:a2+b2=c2
證明:連結(jié)DB,過點D作BC邊上的高DF,則DF=EC=b﹣a
∵S四邊形ADCB=SACD+SABC= b2+ ab.
又∵S四邊形ADCB=SADB+SDCB= c2+ a(b﹣a)
b2+ ab= c2+ a(b﹣a)
∴a2+b2=c2
請參照上述證法,利用圖2完成下面的證明.
將兩個全等的直角三角形按圖2所示擺放,其中∠DAB=90°.求證:a2+b2=c2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校要求八年級同學(xué)在課外活動中,必須在五項球類(籃球、足球、排球、羽毛球、乒乓球)活動中任選一項(只能選一項)參加訓(xùn)練,為了了解八年級學(xué)生參加球類活動的整體情況,現(xiàn)以八年級2班作為樣本,對該班學(xué)生參加球類活動的情況進行統(tǒng)計,并繪制了如圖所示的不完整統(tǒng)計表和扇形統(tǒng)計圖:

根據(jù)圖中提供的信息,解答下列問題:

(1)a= ,b= ;

(2)該校八年級學(xué)生共有600人,則該年級參加足球活動的人數(shù)約 人;

(3)該班參加乒乓球活動的5位同學(xué)中,有3位男同學(xué)(A,B,C)和2位女同學(xué)(D,E),現(xiàn)準備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E做直線l∥BC.

(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;

(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;

(3)在(2)的條件下,若DE=4,DF=3,求AF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABC中,∠ACB=90°,ABC=60°,BC=2cm,DBC的中點,若動點E1cm/s的速度從A點出發(fā),沿著A→B→A的方向運動,設(shè)E點的運動時間為t秒,連接DE,當(dāng)BDE是直角三角形時,t的值______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一元二次方程(a2)x22axa240的一個根為0,則a_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算錯誤的是( 。

A. (6a+1)(6a﹣1)=36a2﹣1 B. (a3﹣8)(﹣a3+8)=a9﹣64

C. (﹣m﹣n)(m﹣n)=n2﹣m2 D. (﹣a2+1)(﹣a2﹣1)=a4﹣1

查看答案和解析>>

同步練習(xí)冊答案