科目:初中數(shù)學(xué) 來源: 題型:
如圖,AB是⊙O的弦,D為半徑OA的中點,過D作CD⊥OA交弦于點E,交⊙O于點F,且CE=CB.
(1)求證:BC是⊙O的切線;
(2)連接AF、BF,求∠ABF的度數(shù);
(3)如果CD=15,BE=10,sinA=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
下列“慢行通過,注意危險,禁止行人通行,禁止非機動車通行”四個交通標志圖(黑白陰影圖片)中為軸對稱圖形的是
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
太陽的半徑約為696000km,把696000這個數(shù)用科學(xué)記數(shù)法表示為_______________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
設(shè)ω是一個平面圖形,如果用直尺和圓規(guī)經(jīng)過有限步作圖(簡稱尺規(guī)作圖),畫出一個正方形與ω的面積相等(簡稱等積),那么這樣的等積轉(zhuǎn)化稱為ω的“化方”.
⑴閱讀填空
如圖①,已知矩形ABCD,延長AD到E,使DE=DC,以AE為直徑作半圓.延長CD交半圓于點H,以DH為邊作正方形DFGH,則正方形DFGH與矩形ABCD等積.
理由:連接AH,EH.
∵ AE為直徑 ∴ ∠AHE=90° ∴ ∠HAE+∠HEA=90°.
∵ DH⊥AE ∴ ∠ADH=∠EDH=90°
∴ ∠HAD+∠AHD=90°
∴ ∠AHD=∠HED ∴ △ADH∽_____________.
∴ ,即=AD×DE.
又∵ DE=DC ∴ =____________,即正方形DFGH與矩形ABCD等積.
⑵操作實踐
平行四邊形的“化方”思路是,先把平行四邊形轉(zhuǎn)化為等積的矩形,再把矩形轉(zhuǎn)化為等積的正方形.
如圖②,請用尺規(guī)作圖作出與□ABCD等積的矩形(不要求寫具體作法,保留作圖痕跡).
⑶解決問題
三角形的“化方”思路是:先把三角形轉(zhuǎn)化為等積的_________________(填寫圖形名稱),再轉(zhuǎn)化為等積的正方形.
如圖③,△ABC的頂點在正方形網(wǎng)格的格點上,請作出與△ABC等積的正方形的一條邊(不要求寫具體作法,保留作圖痕跡,不通過計算△ABC面積作圖).
⑷拓展探究
n邊形(n>3)的“化方”思路之一是:把n邊形轉(zhuǎn)化為等積的n-1邊形,…,直至轉(zhuǎn)化為等積的三角形,從而可以化方.
如圖④,四邊形ABCD的頂點在正方形網(wǎng)格的格點上,請作出與四邊形ABCD等積的三角形(不要求寫具體作法,保留作圖痕跡,不通過計算四邊形ABCD面積作圖).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com