【題目】如圖,在ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,以AC為斜邊的等腰直角三角形AEC的邊CE,與AD交于點(diǎn)F,連接OE,使得OE=OD.在AD上截取AH=CD,連接EH,ED.

(1)判斷四邊形ABCD的形狀,并說(shuō)明理由;

(2)若AB=1,BC=3,求EH的長(zhǎng).

【答案】(1)四邊形ABCD是矩形,理由見(jiàn)解析;(2)

【解析】

(1)根據(jù)四邊形ABCD是平行四邊形,得 AO=OC,再根據(jù)三角形AEC是等腰直角三角形,得出OE=AO=OC,再根據(jù)OE=OD得出OD=OE=OA=OC=OB,從而得出AC=BD,從而得證;

(2)根據(jù)AB=1,BC=3,根據(jù)AH=CD得AH=1,從而計(jì)算HD=2,再根據(jù)三角形AEC是等腰直角三角形證明△AEH≌△CED,得出三角形EHD是等腰直角三角形,從而計(jì)算EH的長(zhǎng).

(1)四邊形ABCD是矩形.理由如下:

∵四邊形ABCD是平行四邊形,

∴OA=OCAC,OB=ODBD.

∵△AEC是等腰直角三角形,

∴OE⊥AC,OEAC=OA.

∵OE=OD,

∴OA=OD,

∴AC=BD,

∴平行四邊形ABCD是矩形;

(2)∵平行四邊形ABCD是矩形,

∴AD=BC=3,∠ADC=90°,CD=AB=1.

∵AH=CD,

∴AH=1.

∵∠AEC=∠ADC=90°,

∴∠DCF+∠DFC=∠EAF+∠AFE=90°.

∵∠AFE=∠DFC,

∴∠DCF=∠EAF,

在△AEH和△CED中,,

∴△AEH≌△CED(SAS),

∴EH=ED,∠AEH=∠DEC.

∵∠AEH+∠HEC=∠AEC=90°,

∴∠CED+∠HEC=∠HED=90°,

∴EH2+ED2=DH2,

∴2EH2=DH2,

∴EHDH(AD﹣AH)(3﹣1)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax2+bx+ca≠0)與y軸的交點(diǎn)為A(0,3),與x軸的交點(diǎn)分別為B(2,0),C(6,0).直線ADx軸,在x軸上位于點(diǎn)B右側(cè)有一動(dòng)點(diǎn)E,過(guò)點(diǎn)E作平行于y軸的直線l與拋物線、直線AD的交點(diǎn)分別為P,Q

1)求拋物線的解析式;

2)當(dāng)點(diǎn)E在線段BC上時(shí),求APC面積的最大值;

3)是否存在點(diǎn)P,使以A,P,Q為頂點(diǎn)的三角形與AOB相似?若存在,求出此時(shí)點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(列方程解應(yīng)用題)為提高學(xué)生的閱讀興趣,某學(xué)校建立了共享書(shū)架,并購(gòu)買(mǎi)了一批書(shū)籍.其中購(gòu)買(mǎi)A種圖書(shū)花費(fèi)了3000元,購(gòu)買(mǎi)B種圖書(shū)花費(fèi)了1600元,A種圖書(shū)的單價(jià)是B種圖書(shū)的1.5倍,購(gòu)買(mǎi)A種圖書(shū)的數(shù)量比B種圖書(shū)多20本,求AB兩種圖書(shū)的單價(jià)分別為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AOB是直角三角形,∠AOB90°,OB2OA,點(diǎn)A在反比例函數(shù)y的圖象上.若點(diǎn)B在反比例函數(shù)y的圖象上,則k的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“新型冠狀病毒肺炎”疫情牽動(dòng)著億萬(wàn)國(guó)人的心,為進(jìn)一步加強(qiáng)疫情防控工作,蘭州市某學(xué)校利用網(wǎng)絡(luò)平臺(tái)進(jìn)行疫情防控知識(shí)測(cè)試.洪濤同學(xué)對(duì)九年級(jí)1班和2班全體學(xué)生的測(cè)試成績(jī)數(shù)據(jù)進(jìn)行了收集、整理和分析,研究過(guò)程中的部分?jǐn)?shù)據(jù)如下.

信息一:疫情防控知識(shí)測(cè)試題共10道題目,每小題10分;

信息二:兩個(gè)班級(jí)的人數(shù)均為40人;

信息三:九年級(jí)1班成績(jī)頻數(shù)分布直方圖如圖,

信息四:九年級(jí)2班平均分的計(jì)算過(guò)程如下,

80.5();

信息五:

統(tǒng)計(jì)量

班級(jí)

平均數(shù)

中位數(shù)

眾數(shù)

方差

九年級(jí)1

82.5

m

90

158.75

九年級(jí)2

80.5

75

n

174.75


根據(jù)以上信息,解決下列問(wèn)題:

1m=    ,n=    ;

2)你認(rèn)為哪個(gè)班級(jí)的成績(jī)更加穩(wěn)定?請(qǐng)說(shuō)明理由;

3)在本次測(cè)試中,九年級(jí)1班甲同學(xué)和九年級(jí)2班乙同學(xué)的成績(jī)均為80分,你認(rèn)為兩人在各自班級(jí)中誰(shuí)的成績(jī)排名更靠前?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC在平面直角坐標(biāo)系中的位置如圖,其中每個(gè)小正方形的邊長(zhǎng)為1個(gè)單位長(zhǎng)度.

(1)畫(huà)出△ABC關(guān)于原點(diǎn)O的中心對(duì)稱圖形△A1B1C1;

(2)畫(huà)出將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△A2B2C2

(3)(2)的條件下,求點(diǎn)A旋轉(zhuǎn)到點(diǎn)A2所經(jīng)過(guò)的路線長(zhǎng)(結(jié)果保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCDABAD)中,點(diǎn)M是邊DC上的一點(diǎn),點(diǎn)P是射線CB上的動(dòng)點(diǎn),連接AM,AP,且∠DAP2AMD

1)若∠APC76°,則∠DAM   ;

2)猜想∠APC與∠DAM的數(shù)量關(guān)系為   ,并進(jìn)行證明;

3)如圖1,若點(diǎn)MDC的中點(diǎn),求證:2ADBP+AP

4)如圖2,當(dāng)∠AMP=∠APM時(shí),若CP15,時(shí),則線段MC的長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知銳角∠AOB,如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作,交射線OB于點(diǎn)D,連接CD;(2)分別以點(diǎn)C,D為圓心,CD長(zhǎng)為半徑作弧,兩弧交于點(diǎn)P,連接CP,DP;(3)作射線OPCD于點(diǎn)Q.根據(jù)以上作圖過(guò)程及所作圖形,下列結(jié)論中錯(cuò)誤的是( 。

A.CPOBB.CP2QCC.AOP=∠BOPD.CDOP

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校九年級(jí)為了解學(xué)生課堂發(fā)言情況,隨機(jī)抽取該年級(jí)部分學(xué)生,對(duì)他們某天在課堂上發(fā)言的次數(shù)進(jìn)行了統(tǒng)計(jì),其結(jié)果如表,并繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,已知B、E兩組發(fā)言人數(shù)的比為52,請(qǐng)結(jié)合圖中相關(guān)數(shù)據(jù)回答下列問(wèn)題:

1)則樣本容量是   ,并補(bǔ)全直方圖;

2)該年級(jí)共有學(xué)生500人,請(qǐng)估計(jì)全年級(jí)在這天里發(fā)言次數(shù)不少于12的次數(shù);

3)已知A組發(fā)言的學(xué)生中恰有1位女生,E組發(fā)言的學(xué)生中有2位男生,現(xiàn)從A組與E組中分別抽一位學(xué)生寫(xiě)報(bào)告,請(qǐng)用列表法或畫(huà)樹(shù)狀圖的方法,求所抽的兩位學(xué)生恰好是一男一女的概率.

發(fā)言次數(shù)n

A

0≤n3

B

3≤n6

C

6≤n9

D

9≤n12

E

12≤n15

F

15≤n18

查看答案和解析>>

同步練習(xí)冊(cè)答案