【題目】已知反比例函數(shù)和一次函數(shù)y=kx﹣1的圖象都經(jīng)過(guò)點(diǎn)P(m,﹣3m).
(1)求點(diǎn)P的坐標(biāo)和這個(gè)一次函數(shù)的解析式;
(2)若點(diǎn)M(a,y1)和點(diǎn)N(a+1,y2)都在這個(gè)一次函數(shù)的圖象上.試通過(guò)計(jì)算或利用一次函數(shù)的性質(zhì),說(shuō)明y1大于y2.
【答案】(1)P的坐標(biāo)(1,﹣3),y=﹣2x﹣1;(2)見(jiàn)解析.
【解析】
解:(1)將點(diǎn)P(m,3m)代入反比例函數(shù)解析式可得m=1;故P的坐標(biāo)(1,3);再將點(diǎn)P(1,3)代入一次函數(shù)解析式可得:3=k1;故k=2;故一次函數(shù)的解析式為y=2x1;
(2)將M、N的值代入一次函數(shù)解析式可得y1=2a1,y2=2(a+1)1=2a3,做差可得y1y2=2a1(2a3),由a的值判斷可得y1大于y2.
解:(1)將點(diǎn)P(m,﹣3m)代入反比例函數(shù)解析式可得:﹣3m=﹣3;即m=1,故P的坐標(biāo)(1,﹣3),
將點(diǎn)P(1,﹣3)代入一次函數(shù)解析式可得:﹣3=k﹣1,故k=﹣2,
故一次函數(shù)的解析式為y=﹣2x﹣1;
(2)∵M、N都在y=﹣2x﹣1上,
∴y1=﹣2a﹣1,y2=﹣2(a+1)﹣1=﹣2a﹣3,
∴y1﹣y2=﹣2a﹣1﹣(﹣2a﹣3)=﹣1+3=2>0,
∴y1>y2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)A(4,0),O為坐標(biāo)原點(diǎn),P是線(xiàn)段OA上任意一點(diǎn)(不含端點(diǎn)O,A),過(guò)P、O兩點(diǎn)的二次函數(shù)y1和過(guò)P、A兩點(diǎn)的二次函數(shù)y2的圖象開(kāi)口均向下,它們的頂點(diǎn)分別為B、C,射線(xiàn)OB與AC相交于點(diǎn)D.當(dāng)OD=AD=3時(shí),這兩個(gè)二次函數(shù)的最大值之和等于( )
A. B. C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在電線(xiàn)桿CD上的C處引拉線(xiàn)CE、CF固定電線(xiàn)桿,拉線(xiàn)CE和地面所成的角∠CED=60°,在離電線(xiàn)桿9m的B處安置高為1.5m的測(cè)角儀AB,在A處測(cè)得電線(xiàn)桿上C處的仰角為30°,求拉線(xiàn)CE的長(zhǎng).(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,將某四邊形紙片ABCD的AB沿BC方向折過(guò)去(其中AB<BC),使得點(diǎn)A落在BC上,展開(kāi)后出現(xiàn)折線(xiàn)BD,如圖②.將點(diǎn)B折向D,使得B,D兩點(diǎn)重疊,如圖③,展開(kāi)后出現(xiàn)折線(xiàn)CE,如圖④.根據(jù)圖④,下列關(guān)系正確的是( 。
A. AD∥BCB. AB∥CDC. ∠ADB=∠BDCD. ∠ADB>∠BDC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩家快遞公司攬件員(攬收快件的員工)的日工資方案如下:
甲公司為“基本工資+攬件提成”,其中基本工資為70元/日,每攬收一件提成2元;
乙公司無(wú)基本工資,僅以攬件提成計(jì)算工資.若當(dāng)日攬件數(shù)不超過(guò)40,每件提成4元;若當(dāng)日攪件數(shù)超過(guò)40,超過(guò)部分每件多提成2元.
如圖是今年四月份甲公司攬件員人均攬件數(shù)和乙公司攪件員人均攬件數(shù)的條形統(tǒng)計(jì)圖:
(1)現(xiàn)從今年四月份的30天中隨機(jī)抽取1天,求這一天甲公司攬件員人均攬件數(shù)超過(guò)40(不含40)的概率;
(2)根據(jù)以上信息,以今年四月份的數(shù)據(jù)為依據(jù),并將各公司攬件員的人均攬件數(shù)視為該公司各攬件員的
攬件數(shù),解決以下問(wèn)題:
①估計(jì)甲公司各攬件員的日平均件數(shù);
②小明擬到甲、乙兩家公司中的一家應(yīng)聘攬件員,如果僅從工資收入的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)知識(shí)幫他選擇,井說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)P:y=ax2+bx+c(a≠0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在x軸的正半軸上),與y軸交于點(diǎn)C,矩形DEFG的一條邊DE在線(xiàn)段AB上,頂點(diǎn)F、G分別在線(xiàn)段BC、AC上,拋物線(xiàn)P上部分點(diǎn)的橫坐標(biāo)對(duì)應(yīng)的縱坐標(biāo)如下:
x | … | ﹣3 | ﹣2 | 1 | 2 | … |
y | … | ﹣4 | 0 | … |
(1)求A、B、C三點(diǎn)的坐標(biāo);
(2)若點(diǎn)D的坐標(biāo)為(m,0),矩形DEFG的面積為S,求S與m的函數(shù)關(guān)系,并指出m的取值范圍;
(3)當(dāng)矩形DEFG的面積S取最大值時(shí),連接DF并延長(zhǎng)至點(diǎn)M,使FM=kDF,若點(diǎn)M不在拋物線(xiàn)P上,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,反比例函數(shù)(k>0)圖象經(jīng)過(guò)等邊△OAB的一個(gè)頂點(diǎn)B,點(diǎn)A坐標(biāo)為(2,0),過(guò)點(diǎn)B作BM⊥x軸,垂足為M.
(1)求點(diǎn)B的坐標(biāo)和k的值;
(2)若將△ABM沿直線(xiàn)AB翻折,得到△ABM',判斷該反比例函數(shù)圖象是從點(diǎn)M'的上方經(jīng)過(guò),還是從點(diǎn)M'的下方經(jīng)過(guò),又或是恰好經(jīng)過(guò)點(diǎn)M',并說(shuō)明理由;
(3)如圖2,在x軸上取一點(diǎn)A1,以AA1為邊長(zhǎng)作等邊△AA1B1,恰好使點(diǎn)B1落在該反比例函數(shù)圖象上,連接BB1,求△ABB1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是以O為圓心的半圓的直徑,半徑CO⊥AO,點(diǎn)M是上的動(dòng)點(diǎn),且不與點(diǎn)A、C、B重合,直線(xiàn)AM交直線(xiàn)OC于點(diǎn)D,連結(jié)OM與CM.
(1)若半圓的半徑為10.
①當(dāng)∠AOM=60°時(shí),求DM的長(zhǎng);
②當(dāng)AM=12時(shí),求DM的長(zhǎng).
(2)探究:在點(diǎn)M運(yùn)動(dòng)的過(guò)程中,∠DMC的大小是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別是A(2,2),B(4,0),C(4,﹣4).
(1)請(qǐng)?jiān)趫D中,畫(huà)出△ABC向左平移6個(gè)單位長(zhǎng)度后得到的△A1B1C1;
(2)以點(diǎn)O為位似中心,將△ABC縮小為原來(lái)的,得到△A2B2C2,請(qǐng)?jiān)趫D中y軸右側(cè),畫(huà)出△A2B2C2,并求出∠A2C2B2的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com