【題目】如圖,一艘快艇從O港出發(fā),向西北方向行駛到M處,然后向正東行駛到N處,再向西南方向行駛,共經(jīng)過1.5小時(shí)回到O港,已知快艇的速度是每小時(shí)50海里,則M,N之間的距離是( 。┖@

A.7575B.C.75D.50

【答案】A

【解析】

先證出△MON為等腰直角三角形,OMONMN,根據(jù)題意可得OM+OM+MN75,由此即可求得MN之間的距離.

如圖所示:

由題意得:∠NOC45°,∠MOD45°

∴∠MON90°,

MNx軸,

∴∠MNO=∠NOC45°,∠NMO=∠MOD45°,

∴△MON為等腰直角三角形,

OMONMN,

OM+OM+MN50×1.575(海里),

MN+MN+MN75

解得:MN=(7575)海里,

MN之間的距離是(7575)海里;

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙ORtABC的外接圓,直徑AB4,直線EF經(jīng)過點(diǎn)C,ADEF于點(diǎn)D,∠ACD=∠B

1)求證:EF是⊙O的切線;

2)若AD1,求BC的長;

3)在(2)的條件下,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,直徑CD⊥弦ABE,AMBCM,交CDN,連ADAB=,ON=1,則⊙O的半徑長為_____________


查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,,交于點(diǎn),且,的平分線于點(diǎn)

1)求證:四邊形是矩形;

2)若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)學(xué)生垃圾分類意識,推動(dòng)垃圾分類進(jìn)校園.某初中學(xué)校組織全校1200名學(xué)生參加了“垃圾分類知識競賽”,為了解學(xué)生的答題情況,學(xué)?紤]采用簡單隨機(jī)抽樣的方法抽取部分學(xué)生的成績進(jìn)行調(diào)查分析.

1)學(xué)校設(shè)計(jì)了以下三種抽樣調(diào)查方案:

方案一:從初一、初二、初三年級中指定部分學(xué)生成績作為樣本進(jìn)行調(diào)查分析;

方案二:從初一、初二年級中隨機(jī)抽取部分男生成績及在初三年級中隨機(jī)抽取部分女生成績進(jìn)行調(diào)查分析;

方案三:從三個(gè)年級全體學(xué)生中隨機(jī)抽取部分學(xué)生成績進(jìn)行調(diào)查分析.

其中抽取的樣本具有代表性的方案是__________.(填“方案一”、“方案二”或“方案三”)

2)學(xué)校根據(jù)樣本數(shù)據(jù),繪制成下表(90分及以上為“優(yōu)秀”,60分及以上為“及格”):

樣本容量

平均分

及格率

優(yōu)秀率

最高分

最低分

100

93.5

100

80

分?jǐn)?shù)段統(tǒng)計(jì)(學(xué)生成績記為

分?jǐn)?shù)段

頻數(shù)

0

5

25

30

40

請結(jié)合表中信息解答下列問題:

①估計(jì)該校1200名學(xué)生競賽成績的中位數(shù)落在哪個(gè)分?jǐn)?shù)段內(nèi);

②估計(jì)該校1200名學(xué)生中達(dá)到“優(yōu)秀”的學(xué)生總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地之間有一條筆直的公路,小明從甲地出發(fā)步行前往乙地,同時(shí)小亮從乙地出發(fā)騎自行車前往甲地,小亮到達(dá)甲地沒有停留,按原路原速返回,追上小明后兩人一起步行到乙地.如圖,線段OA表示小明與甲地的距離y1(米)與行走的時(shí)間x(分鐘)之間的函數(shù)關(guān)系:折線BCDA表示小亮與甲地的距離y2(米)與行走的時(shí)間x(分鐘)之間的函數(shù)關(guān)系.請根據(jù)圖象解答下列問題:

1)小明步行的速度是   /分鐘,小亮騎自行車的速度是   /分鐘;

2)線段OABC相交于點(diǎn)E,求點(diǎn)E坐標(biāo);

3)請直接寫出小亮從乙地出發(fā)到追上小明的過程中,與小明相距100米時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AD6,AB4,以AD為直徑在矩形內(nèi)作半圓,點(diǎn)E為半圓上的一動(dòng)點(diǎn)(不與A、D重合),連接DECE,當(dāng)△DEC為等腰三角形時(shí),DE的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,上的一點(diǎn),過點(diǎn)于點(diǎn),交于點(diǎn),且=

求證:的切線;

,,求的長.

查看答案和解析>>

同步練習(xí)冊答案