【題目】如圖,直線y=-x+8x軸交于A點,與y軸交于B點,動點PA點出發(fā),以每秒2個單位的速度沿AO方向向點O勻速運動,同時動點QB點出發(fā),以每秒1個單位的速度沿BA方向向點A勻速運動,當一個點停止運動,另一個點也隨之停止運動,連接PQ,設運動時間為ts)(0<t≤3).

(1)寫出A,B兩點的坐標;

(2)當t為何值時,以點A,P,Q為頂點的三角形與ABO相似,并直接寫出此時點Q的坐標.

【答案】(1)A(6,0),B(0,8);(2) 時,以點A,P,Q為頂點的三角形與ABO相似,此時點.

【解析】

(1)根據(jù)直線解析式分別令,即可得到點A、B的坐標

(2)兩種情況進行討論利用三角函數(shù)列關(guān)于的方程,解方程求即可求得滿足條件的點Q坐標.

(1),,解得,

所以點,

所以;

(2)時,則,

所以 ,解得,

時,

所以解得

因為所以符合題意,此時

,

所以點,

所以當時,以點A,P,Q為頂點的三角形與ABO相似,此時點.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學興趣活動課上,小明將等腰△ABC的底邊BC與直線1重合,問:

1)已知ABAC6,∠BAC120°,點PBC邊所在的直線l上移動,根據(jù)“直線外一點到直線上所有點的連線中垂線段最短”,小明發(fā)現(xiàn)AP的最小值是   

2)為進一步運用該結(jié)論,小明發(fā)現(xiàn)當AP最短時,在RtABP中,∠P90°,作了AD平分∠BAP,交BP于點D,點E、F分別是AD、AP邊上的動點,連接PE、EF,小明嘗試探索PE+EF的最小值,為轉(zhuǎn)化EF,小明在AB上截取AN,使得ANAF,連接NE,易證△AEF≌△AEN,從而將PE+EF轉(zhuǎn)化為PE+EN,轉(zhuǎn)化到(1)的情況,若BP3AB6,AP3,則PE+EF的最小值為   ;

3)請應用以上轉(zhuǎn)化思想解決問題(3),在直角△ABC中,∠C90°,∠B30°,AC10,點DCD邊上的動點,連接AD,將線段AD順時針旋轉(zhuǎn)60°,得到線段AP,連接CP,求線段CP的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC,BAC=90°,AB=6,AC=8,P是斜邊BC上一動點,PEAB于點E,PFAC于點F,EFAP相交于點O,OF的最小值為 ( )

A. 4.8 B. 1.2

C. 3.6 D. 2.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ABAD,點B關(guān)于AC的對稱點B′恰好落在CD上,若∠BAD100°,則∠ACB的度數(shù)為( 。

A.40°B.45°C.60°D.80°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠B30°,點DBC邊上,點EAC邊上,ADBD,DECE,若△ADE為等腰三角形,則∠C的度數(shù)為_____°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某校數(shù)學興趣小組利用自制的直角三角形硬紙板DEF來測量操場旗桿AB的高度,他們通過調(diào)整測量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點A在同一直線上,已知DE=0.5米,EF=0.25米,目測點D到地面的距離DG=1.5米,到旗桿的水平距離DC=20米,求旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知等邊△ABC,延長△ABC的各邊分別到點DE、F使得AEBFCD,順次連接D、E、F,求證:△DEF是等邊三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】郵政部門規(guī)定:信函重100克以內(nèi)(包括100克)每20克貼郵票0.8元,不足20克重以20克計算;超過100克,先貼郵票4元,超過100克部分每100克加貼郵票2元,不足100克重以100克計算.八(9)班有11位同學參加項目化學習知識競賽,若每份答卷重12克,每個信封重4克,將這11份答卷分裝在兩個信封中寄出,所貼郵票的總金額最少是_________元.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】a、b、cABC中∠A、B、C的對邊,拋物線y=x2﹣2ax+b2x軸于M(a+c,0),則ABC是( 。

A. 等腰三角形 B. 等邊三角形 C. 直角三角形 D. 不確定

查看答案和解析>>

同步練習冊答案