在如圖的正方形網(wǎng)格中有一個三角形ABC.
(1)作△ABC關(guān)于直線MN的軸對稱圖形△A′B′C′,當(dāng)網(wǎng)格上最小正方形邊長為1時,則三角形ABC與它軸對稱的像的面積之和是多少?
(2)連接CC′,交MN與點O,以點O為旋轉(zhuǎn)中心,將三角形A′B′C′順時針旋轉(zhuǎn)90°得三角形A″B″C″,則三角形A″B″C″的面積是多少?
分析:(1)找到A、B、C三點關(guān)于MN的對稱點,順次連接可得△A′B′C′,利用構(gòu)圖法求解面積;
(2)找到A'、B'、C'三點的旋轉(zhuǎn)對稱點,順次連接可得三角形A″B″C″,△A″B″C″的面積與△ABC的面積相等.
解答:解:(1)如圖所示:

△ABC的面積=2×3-
1
2
×2×1-
1
2
×2×1-
1
2
×1×3=
5
2
,
則三角形ABC與它軸對稱的像的面積之和是5;

(2)如圖所示:
,
S△A''B''C''=S△ABC=
5
2
點評:本題考查了軸對稱作圖及旋轉(zhuǎn)作圖的知識,注意構(gòu)圖法求三角形面積的運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、在如圖的正方形網(wǎng)格中作一個有兩邊長為有理數(shù)的銳角等腰三角形,并要求三角形的各個頂點均在格點上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在如圖的正方形網(wǎng)格中,有一個格點△ABC,如果要另外選取一個格點E,使△ACE與△ABC全等,則這樣的格點E有(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在如圖的正方形網(wǎng)格中,每個小正方形的邊長都是單位1,△ABC的頂點均在格點上.
(1)畫出△ABC向左平移2個單位,然后再向上平移4個單位后的△A1B1C1;
(2)畫出△A2B2C2,使△A2B2C2和△A1B1C1關(guān)于點O成中心對稱;
(3)指出如何平移△ABC,使得△A2B2C2和△ABC能拼成一個平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在如圖的正方形網(wǎng)格中有一個三角形ABC,作出三角形ABC關(guān)于直線MN的軸反射圖形,若網(wǎng)格上最小正方形邊長為1,則三角形ABC與它軸反射圖形的面積之和是
5
5

查看答案和解析>>

同步練習(xí)冊答案