【題目】如圖,在平行四邊形ABCD中,E為BC邊上的一點(diǎn),連結(jié)AE、BD且AE=AB.
(1)求證:∠ABE=∠EAD;
(2)若∠AEB=2∠ADB,求證:四邊形ABCD是菱形.

【答案】
(1)證明:在平行四邊形ABCD中,AD∥BC,

∴∠AEB=∠EAD,

∵AE=AB,

∴∠ABE=∠AEB,

∴∠ABE=∠EAD


(2)證明:∵AD∥BC,

∴∠ADB=∠DBE,

∵∠ABE=∠AEB,∠AEB=2∠ADB,

∴∠ABE=2∠ADB,

∴∠ABD=∠ABE﹣∠DBE=2∠ADB﹣∠ADB=∠ADB,

∴AB=AD,

又∵四邊形ABCD是平行四邊形,

∴四邊形ABCD是菱形


【解析】(1)根據(jù)平行四邊形的對邊互相平行可得AD∥BC,再根據(jù)兩直線平行,內(nèi)錯角相等可得∠AEB=∠EAD,根據(jù)等邊對等角可得∠ABE=∠AEB,即可得證;(2)根據(jù)兩直線平行,內(nèi)錯角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根據(jù)等角對等邊求出AB=AD,然后利用鄰邊相等的平行四邊形是菱形證明即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】由一些相同的小正方體搭成的幾何體的左視圖和俯視圖如圖所示,請在網(wǎng)格中涂出一種該幾何體的主視圖,且使該主視圖是軸對稱圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx(a>0)經(jīng)過原點(diǎn)O和點(diǎn)A(2,0).
(1)寫出拋物線的對稱軸與x軸的交點(diǎn)坐標(biāo);
(2)點(diǎn)(x1 , y1),(x2 , y2)在拋物線上,若x1<x2<1,比較y1 , y2的大小;
(3)點(diǎn)B(﹣1,2)在該拋物線上,點(diǎn)C與點(diǎn)B關(guān)于拋物線的對稱軸對稱,求直線AC的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,點(diǎn)D在邊AB上,連接CD,將線段CD繞點(diǎn)C順時針旋轉(zhuǎn)90°至CE位置,連接AE.
(1)求證:AB⊥AE;
(2)若BC2=ADAB,求證:四邊形ADCE為正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)A(1,2),B(0,4).

(1)求此函數(shù)的解析式.

(2)求原點(diǎn)到直線AB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,若二次函數(shù)y= x2+bx+c的圖象與x軸交于A(﹣2,0),B(3,0)兩點(diǎn),點(diǎn)A關(guān)于正比例函數(shù)y= x的圖象的對稱點(diǎn)為C.

(1)求b、c的值;
(2)證明:點(diǎn)C在所求的二次函數(shù)的圖象上;
(3)如圖②,過點(diǎn)B作DB⊥x軸交正比例函數(shù)y= x的圖象于點(diǎn)D,連結(jié)AC,交正比例函數(shù)y= x的圖象于點(diǎn)E,連結(jié)AD、CD.如果動點(diǎn)P從點(diǎn)A沿線段AD方向以每秒2個單位的速度向點(diǎn)D運(yùn)動,同時動點(diǎn)Q從點(diǎn)D沿線段DC方向以每秒1個單位的速度向點(diǎn)C運(yùn)動.當(dāng)其中一個點(diǎn)到達(dá)終點(diǎn)時,另一個點(diǎn)隨之停止運(yùn)動,連結(jié)PQ、QE、PE.設(shè)運(yùn)動時間為t秒,是否存在某一時刻,使PE平分∠APQ,同時QE平分∠PQC?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,DE平分∠ADC交AB于點(diǎn)E,BF平分∠ABC,交CD于點(diǎn)F.
(1)求證:DE=BF;
(2)連接EF,寫出圖中所有的全等三角形.(不要求證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=ax2+bx﹣3(a,b是常數(shù))的圖象與x軸交于點(diǎn)A(﹣3,0)和點(diǎn)B(1,0),與y軸交于點(diǎn)C.動直線y=t(t為常數(shù))與拋物線交于不同的兩點(diǎn)P、Q.

(1)求a和b的值;
(2)求t的取值范圍;
(3)若∠PCQ=90°,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D、E分別在線段AB、AC上且∠ABC=∠AED , 若DE=4,AE=5,BC=8,則AB的長為( 。
A.
B.10
C.
D.

查看答案和解析>>

同步練習(xí)冊答案