【題目】如圖,E是△ABC中BC邊上的一點(diǎn),且BE= BC;點(diǎn)D是AC上一點(diǎn),且AD= AC,SABC=24,則SBEF﹣SADF=(
A.1
B.2
C.3
D.4

【答案】B
【解析】解:過D作DG∥AE交CE于G, ∵AD= AC,
∴CG=3EG,
∴AE= DG,CE= CG,
∵EC=2BE,
∴BE=2EG,
∴EF= DG,
∴AF= DG,
∴EF=AF,
∵SABC=24,
∴SABD= SABC=6.
∵EC=2BE,SABC=24,
∴SABE= SABC=8,
∵SABE﹣SABD=(SABF+SBEF)﹣(SADF+SABF)=SBEF﹣SADF
即SBEF﹣SADF=SABE﹣SABD=8﹣6=2.
故選B.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解三角形的面積的相關(guān)知識(shí),掌握三角形的面積=1/2×底×高.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“為了安全,請勿超速”.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時(shí),為了檢測車輛是否超速,在公路MN旁設(shè)立了觀測點(diǎn)C,從觀測點(diǎn)C測得一小車從點(diǎn)A到達(dá)點(diǎn)B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200米,此車超速了嗎?請說明理由.(參考數(shù)據(jù): ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的面積為6,AC=3,現(xiàn)將△ABC沿AB所在直線翻折,使點(diǎn)C落在直線AD上的C′處,P為直線AD上的一點(diǎn),則線段BP的長不可能是(
A.3
B.4
C.5.5
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小敏家對面新建了一幢圖書大廈,小敏在自家窗口測得大廈頂部的仰角為45°,大廈底部的仰角為30°,如圖所示,量得兩幢樓之間的距離為20 米.

(1)求出大廈的高度BD;
(2)求出小敏家的高度AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知鈍角三角形ABC,將△ABC繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)110°得到△AB′C′,連接BB′,若AC′∥BB′,則∠CAB′的度數(shù)為(
A.55°
B.65°
C.75°
D.85°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)在如圖所示的數(shù)軸上,把數(shù)﹣2 ,4,2.5表示出來,并用將它們連接起來;

(2)假如在原點(diǎn)處放立一擋板(厚度不計(jì)),有甲、乙兩個(gè)小球(忽略球的大小,可看作一點(diǎn)),小球甲從表示數(shù)﹣2的點(diǎn)處出發(fā),以1個(gè)單位長度/秒的速度沿?cái)?shù)軸向左運(yùn)動(dòng);同時(shí)小球乙從表示數(shù)4的點(diǎn)處出發(fā),以2個(gè)單位長度/秒的速度沿?cái)?shù)軸向左運(yùn)動(dòng),在碰到擋板后即刻按原來的速度向相反的方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).

請從A,B兩題中任選一題作答.

A.當(dāng)t=3時(shí),求甲、乙兩小球之間的距離.

B.用含t的代數(shù)式表示甲、乙兩小球之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小趙和小王交流暑假中的活動(dòng),小趙說:“我們一家外出旅行了一個(gè)星期,這7天的日期數(shù)之和是84天,你知道我們幾號(hào)出去的么?”小王說“我暑假去舅舅家住了7天,日歷數(shù)再加月份數(shù)也是84,你能猜出我是幾月幾號(hào)回的家?試試看列出方程,解決小趙、小王的問題.(提示:7月1日﹣9月1日暑假)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】等腰三角形周長為8,底邊BC長為,腰AB長為,

(1)寫出關(guān)于的函數(shù)關(guān)系式__________________

(2)寫出的取值范圍_____________;寫出的取值范圍_____________

(3)畫出這個(gè)函數(shù)的圖象

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系xoy中,點(diǎn)A、B的坐標(biāo)分別是A(-1,0),B(3,0),將線段AB向上平移2個(gè)單位,再向右平移1個(gè)單位,得到線段DC,點(diǎn)A、B的對應(yīng)點(diǎn)分別是D、C,連接AD、BC.

(1)直接寫出點(diǎn)C,D的坐標(biāo);

(2)求四邊形ABCD的面積;

(3)點(diǎn)P為線段BC上任意一點(diǎn)(與點(diǎn)B、C不重合),連接PD,PO.求證:∠CDP+∠BOP=∠OPD.

查看答案和解析>>

同步練習(xí)冊答案