【題目】一次函數y =kx+2+k與y軸的交點在原點上方(不與原點重合),則k的取值范圍是_______.
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知一次函數y=﹣2x+1的圖象經過P1(x1,y1)、P2(x2,y2)兩點,若x1<x2,則y1_____y2.(填“>”“<”“=”)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN與∠AOB互補.若∠MPN在繞點P旋轉的過程中,其兩邊分別與OA,OB相交于M、N兩點,則以下結論:(1)PM=PN恒成立,(2)OM+ON的值不變,(3)四邊形PMON的面積不變,(4)MN的長不變,其中正確的個數為
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本小題滿分9分)
為了考察甲、乙兩種成熟期小麥的株高長勢狀況,現從中各隨機抽取6株,并測得它們的株高(單位:cm)如下表所示:
甲 | 63 | 66 | 63 | 61 | 64 | 61 |
乙 | 63 | 65 | 60 | 63 | 64 | 63 |
(1)請分別計算表內兩組數據的方差,并借此比較哪種小麥的株高長勢比較整齊?
(2)現將進行兩種小麥優(yōu)良品種雜交試驗,需從表內的甲、乙兩種小麥中,各隨機抽取一株進行配對,以預估整體配對狀況.請你用列表法或畫樹狀圖的方法,求所抽取的兩株配對小麥株高恰好都等于各自平均株高的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(本小題滿分14分)
如圖,直線y=kx+b(k、b為常數)分別與x軸、y軸交于點A(-4,0)、B(0,3),拋物線y=-x2+2x+1與y軸交于點C.
(1)求直線y=kx+b的解析式;
(2)若點P(x,y)是拋物線y=-x2+2x+1上的任意一點,設點P到直線AB的距離為d,求d關于x的函數解析式,并求d取最小值時點P的坐標;
(3)若點E在拋物線y=-x2+2x+1的對稱軸上移動,點F在直線AB上移動,求CE+EF的最小值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是( )
A.12
B.24
C.12
D.16
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com