在一個變化過程中,可以取不同數(shù)值的量稱為________,保持不變的量稱為________.

答案:變量,常量
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

將正方形ABCD繞中心O順時針旋轉(zhuǎn)角α得到正方形A1B1C1D1,如圖1所示.
(1)當α=45°時(如圖2),若線段OA與邊A1D1的交點為E,線段OA1與AB的交點為F,可得下列結(jié)論成立 ①△EOP≌△FOP;②PA=PA1,試選擇一個證明.
(2)當0°<α<90°時,第(1)小題中的結(jié)論PA=PA1還成立嗎?如果成立,請證明;如果不成立,請說明理由.
(3)在旋轉(zhuǎn)過程中,記正方形A1B1C1D1與AB邊相交于P,Q兩點,探究∠POQ的度數(shù)是否發(fā)生變化?如果變化,請描述它與α之間的關(guān)系;如果不變,請直接寫出∠POQ的度數(shù).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,小明把一張長為20cm,寬為10cm的矩形硬紙板的四周各剪去一個同樣大小的正方形,再折合成一個無蓋的長方體盒子.設(shè)剪去的正方形邊長為x (cm),折成的長方體盒子的側(cè)面積為y (cm2),底面積為S (cm2).
(1)求S與x之間的函數(shù)關(guān)系式,并求S=44 (cm2)時x的值;(結(jié)果可保留根式)
(2)求y與x之間的函數(shù)關(guān)系式;在x的變化過程中,y會不會有最大值?x取何值時取得最大值,最大值是多少?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,小明把一張長為20cm,寬為10cm的矩形硬紙板的四周各剪去一個同樣大小的正方形,再折合成一個無蓋的長方體盒子.設(shè)剪去的正方形邊長為x (cm),折成的長方體盒子的側(cè)面積為y (cm2),底面積為S (cm2).
(1)求S與x之間的函數(shù)關(guān)系式,并求S=44 (cm2)時x的值;(結(jié)果可保留根式)
(2)求y與x之間的函數(shù)關(guān)系式;在x的變化過程中,y會不會有最大值?x取何值時取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:2008-2009學年河南省駐馬店市九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

如圖,小明把一張長為20cm,寬為10cm的矩形硬紙板的四周各剪去一個同樣大小的正方形,再折合成一個無蓋的長方體盒子.設(shè)剪去的正方形邊長為x (cm),折成的長方體盒子的側(cè)面積為y (cm2),底面積為S (cm2).
(1)求S與x之間的函數(shù)關(guān)系式,并求S=44 (cm2)時x的值;(結(jié)果可保留根式)
(2)求y與x之間的函數(shù)關(guān)系式;在x的變化過程中,y會不會有最大值?x取何值時取得最大值,最大值是多少?

查看答案和解析>>

科目:初中數(shù)學 來源:吉林省期末題 題型:解答題

如圖,小明把一張長為20cm,寬為10cm的矩形硬紙板的四周各剪去一個同樣大小的正方形,再折合成一個無蓋的長方體盒子。設(shè)剪去的正方形邊長為x (cm),折成的長方體盒子的側(cè)面積為y (cm2),底面積為S (cm2)。
(1)求S與x之間的函數(shù)關(guān)系式,并求S= 44 (cm2) 時x的值;(結(jié)果可保留根式)
(2)求y與x之間的函數(shù)關(guān)系式;在x的變化過程中,y會不會有最大值?x取何值時取得最大值,最大值是多少?

查看答案和解析>>

同步練習冊答案