分析 過O作OC⊥AB于C,根據(jù)垂徑定理求出AC、BC,根據(jù)勾股定理求出OC,根據(jù)勾股定理求出OP即可.
解答 解:過O作OC⊥AB于C,
則∠OCP=∠ACO=90°,
∵OC⊥AB,OC過O,
∴AC=BC=$\frac{1}{2}$AB=$\frac{1}{2}$×8cm=4cm,
∵BP=2cm,
∴PC=BC+BP=6cm,
在Rt△ACO中,由勾股定理得:OC=$\sqrt{O{A}^{2}-A{C}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3(cm),
在Rt△PCO中,由勾股定理得:OP=$\sqrt{P{C}^{2}+O{C}^{2}}$=$\sqrt{{3}^{2}+{6}^{2}}$=3$\sqrt{5}$(cm),
故答案為:$3\sqrt{5}$.
點(diǎn)評(píng) 本題考查了勾股定理和垂徑定理的應(yīng)用,能靈活運(yùn)用垂徑定理進(jìn)行推理是解此題的關(guān)鍵,注意:垂直于弦的直徑平分弦.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
方式一 | 方式二 | |
月租費(fèi) | 30元/月 | 0元 |
本地的通話費(fèi) | 0.30元/分 | 0.40元/分 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 560 | B. | 50 | ||
C. | 被抽取的50名學(xué)生 | D. | 七年級(jí)的560名學(xué)生 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 24 | B. | 36 | C. | 48 | D. | 60 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ∠1=∠2 | B. | ∠4=∠6 | C. | ∠4=∠5 | D. | ∠1+∠3=180° |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com