y2+4y-5=0.
【答案】分析:分解因式得到(y+5)(y-1)=0,推出方程y+5=0,y-1=0,求出方程的解即可.
解答:解:y2+4y-5=0,
分解因式得:(y+5)(y-1)=0,
∴y+5=0,y-1=0,
解得:y1=-5,y2=1.
∴方程的解是y1=-5,y2=1
點評:本題主要考查對解一元一次方程,等式的性質(zhì),解一元二次方程等知識點的理解和掌握,能把一元二次方程轉(zhuǎn)化成一元一次方程是解此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

若x,y為正整數(shù),且x2+y2+4y-96=0,則xy=
 
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)附加題
(1)試用一元二次方程的求根公式,探索方程ax2+bx+c=0(a≠0)的兩根互為相反數(shù)的條件是
 

(2)已知x、y為實數(shù),
3x-2
+y2-4y+4=0
,則
x
y
=
 

(3)在直角梯形ABCD中,AD∥BC,∠C=90度,BC=16,AD=21,DC=12,動點P從點D出發(fā),沿線段DA方向以每秒2個單位長度的速度運動,動點Q從點C出發(fā),在線段CB以每秒1個單位長度的速度向點B運動.點P、Q分別從點D、C同時出發(fā),當點P運動到點A時,點Q隨之停止運動,設(shè)運動時間為t秒.
①設(shè)△BPQ的面積為S,求S和t之間的函數(shù)關(guān)系式;
②當t為何值時,以B、P、Q三點為頂點的三角形是等腰三等形?(分類討論)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

在一次數(shù)學興趣小組的活動課上,有下面的一段對話,請你閱讀完后再解答問題.
老師:同學們,今天我們來探索如下方程的解法:(
x
x-1
)2-4(
x
x-1
)+4=0

學生甲:老師,原方程可整理為
x2
(x-1)2
-
4x
x-1
+4=0
,再去分母,行得通嗎?
老師:很好,當然可以這樣做.
再仔細觀察,看看這個方程有什么特點?還可以怎樣解答?
學生乙:老師,我發(fā)現(xiàn)
x
x-1
是整體出現(xiàn)的!
老師:很好,我們把
x
x-1
看成一個整體,用y表示,即可設(shè)
x
x-1
=y,那么原方程就變?yōu)閥2-4y+4=0.
全體學生:噢,等號左邊是一個完全平方式?!方程可以變形成(y-2)2=0
老師:大家真會觀察和思考,太棒了!顯然y2-4y+4=0的根是y=2,那么就有
x
x-1
=2
學生丙:對啦,再解這兩個方程,可得原方程的根x=2,再驗根就可以了!
老師:同學們,通常我們把這種方法叫做換元法,這是一種重要的轉(zhuǎn)化方法.
全體同學:OK,換元法真神奇!
現(xiàn)在,請你用換元法解下列分式方程(組):
(1)(
2x
x-1
)2-
4x
x-1
+1=0

(2)
6
x-y
+
4
x+y
=3
9
x-y
-
1
x+y
=1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

分解因式:
①x2y2-5x2y-6x2
②(p2+q22-4p2q2
③(a-b)4-3(a-b)2-10   
④x2-y2+4y-4.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知x-y=2,則x2-y2-4y=
4
4

查看答案和解析>>

同步練習冊答案