【題目】定義一種對正整數(shù)n“F”運算:①當n為奇數(shù)時,結果為3n+5;②當n為偶數(shù)時,結果為(其中k是使為奇數(shù)的正整數(shù)),并且重復運算,如取n=26,則

則當n=898時,第2018“F”運算的結果是(

A. 8 B. 6 C. 2 D. 1

【答案】8

【解析】

先分別計算出n=898時第一、二、三、四、五、六、七次運算的結果,找出規(guī)律再進行解答即可.

根據(jù)題意,得

n=898時,

第一次運算, =449;

第二次運算,3n+5=3×449+5=1352;

第三次運算, =169;

第四次運算,3×169+5=512;

第五次運算,=1;

第六次運算,3×1+5=8;

第七次運算, =1,

可以看出,從第五次開始,結果就只是1,8兩個數(shù)輪流出現(xiàn),

且當次數(shù)為偶數(shù)時,結果是8,次數(shù)是奇數(shù)時,結果是1,

2018次是偶數(shù),因此最后結果是8.

故答案為:8.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】耐心算一算:(1)-3-7; (2);

(3)-20+(-18)-12 +10 (4)-2.5×17×(-4)×(-0.1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A從原點出發(fā)沿數(shù)軸向左運動,同時,點B也從原點出發(fā)沿數(shù)軸向右運動,3秒后,兩點相距15個單位長度.已知點B的速度是點A的速度的4倍(速度單位:單位長度/秒).

1)求出點A、點B運動的速度,并在數(shù)軸上標出A、B兩點從原點出發(fā)運動3秒時的位置;

2)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動,幾秒時,原點恰好處在點A、點B的正中間?

3)若A、B兩點從(1)中的位置開始,仍以原來的速度同時沿數(shù)軸向左運動時,另一點C同時從B點位置出發(fā)向A點運動,當遇到A點后,立即返回向B點運動,遇到B點后又立即返回向A點運動,如此往返,直到B點追上A點時,C點立即停止運動.若點C一直以20單位長度/秒的速度勻速運動,那么點C從開始運動到停止運動,行駛的路程是多少個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點,增加下列條件,不能得出BEDF的是(  )

A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班組織班團活動,班委會準備用15元錢全部用來購買筆記本和中性筆兩種獎品,已知筆記本2元/本,中性筆1元/支,且每種獎品至少買1件.
(1)若設購買筆記本x本,中性筆y支,寫出y與x之間的關系式;
(2)有多少種購買方案?請列舉所有可能的結果;
(3)從上述方案中任選一種方案購買,求買到的中性筆與筆記本數(shù)量相等的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E為BC邊上的點(不與B,C重合),F(xiàn)為CD邊上的點(不與C,D重合),且AE=AF,AB=4,設△AEF的面積為y,EC的長為x,求y關于x的函數(shù)關系式,并寫出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】函數(shù) y=(a為常數(shù))的圖象上有三點(﹣4,y1),(﹣1,y2),(2,y3),則函數(shù)值y1 , y2 , y3的大小關系是( 。
A.y3<y1<y2
B.y3<y2<y1
C.y1<y2<y3
D.y2<y3<y1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】第五屆中國機器人峰會將于59日在余姚開幕某公司購買一種T恤衫參加此次峰會.了解到某商店正好有這種T恤衫的促銷,當購買10件時每件140元,購買數(shù)量每增加1件單價減少1元;當購買數(shù)量為60(60)以上時,一律每件80元.

(1)如果購買(10<<60),每件的單價為元,請寫出關于的函數(shù)關系式;

(2)如果該公司共購買了100T恤衫,由于某種原因需分兩批購買,且第一批購買量多于30件且少于60件.已知購買兩批T恤衫一共花了9200元,求第一批T恤衫的購買數(shù)量.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,AE平分∠BAD,交BC于點E,BF平分∠ABC,交AD于點F,AE與BF交于點P,連接EF,PD.
(1)求證:四邊形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.

查看答案和解析>>

同步練習冊答案