【題目】如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過C點的直線互相垂直,垂足為D,且AC平分∠DAB

1)求證:DC為⊙O的切線;

2)若⊙O的半徑為3AD=4,求CD的長.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)連接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分線的性質可以證明∠DAC=∠OCA,接著利用平行線的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可證明直線CD⊙O相切于C點;

2)連接BC,根據圓周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC∽△ACB,然后利用相似三角形的性質即可解決問題.

試題解析:(1)證明:連接OC

∵OA=OC

∴∠OAC=∠OCA

∵AC平分∠DAB

∴∠DAC=∠OAC

∴∠DAC=∠OCA

∴OC∥AD

∵AD⊥CD∴OC⊥CD

直線CD⊙O相切于點C;

2)解:連接BC,則∠ACB=90°

∵∠DAC=∠OAC,∠ADC=∠ACB=90°

∴△ADC∽△ACB,

∴AC2=ADAB

∵⊙O的半徑為3,AD=4

∴AB=6,

∴AC=2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在矩形AOBC中,OB=6,OA=4,分別以OB,OA所在直線為x軸和y軸,建立如圖所示的平面直角坐標系.F是邊BC上一點(不與B、C兩點重合),過點F的反比例函數(shù)y=(k>0)圖象與AC邊交于點E.

(1)請用k的表示點E,F(xiàn)的坐標;

(2)若OEF的面積為9,求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是菱形,點D的坐標是(0,),以點C為頂點的拋物線y=ax2+bx+c恰好經過x軸上A、B兩點.

(1)求A、B、C三點的坐標;

(2)求過A、B、C三點的拋物線的解析式;

(3)若將上述拋物線沿其對稱軸向上平移后恰好過D點,求平移后拋物線的解析式,并指出平移了多少個單位長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把一塊三角板放在直角坐標系第一象限內,其中30°角的頂點A落在y軸上,直角頂點C落在x軸的(0)處,∠ACO=60°,點DAB邊上中點,將ABC沿x軸向右平移,當點A落在直線y=x3上時,線段CD掃過的面積為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小穎和小亮上山游玩,小穎乘坐纜車,小亮步行,兩人相約在山頂?shù)睦|車終點會合.已知小亮行走到纜車終點的路程是纜車到山頂?shù)木路長的2倍,小穎在小亮出發(fā)后50分才乘上纜車,纜車的平均速度為180米/分,設小亮出發(fā)x分后行走的路程為y米.圖中的折線表示小亮在整個行走過程中yx的變化關系.

1)小亮行走的總路程是_________米,他途中休息了___________分;

2)分別求出小亮在休息前和休息后所走的路程段上的步行速度;

3)當小穎到達纜車終點時,小亮離纜車終點的路程是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某批發(fā)商以每件50元的價格購進800T恤,第一個月以單價80元銷售,售出了200件;第二個月如果單價不變,預計仍可售出200件,批發(fā)商為增加銷售量,決定降價銷售,根據市場調查,單價每降低1元,可多售出10件,但最低單價應高于購進的價格;第二個月結束后,批發(fā)商將對剩余的T恤一次性清倉銷售,清倉是單價為40元.如果批發(fā)商希望通過銷售這批T恤獲利9000元,那么第二個月的單價應是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點EAD邊上,點FAD的延長線上,且BE=CF.

(1)求證:四邊形EBCF是平行四邊形.

(2)若BEC=90°,ABE=30°,AB=,求ED的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點,點,直線與坐標軸平行且,則點的坐標是____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠A=m°,∠ABC和∠ACD的平分線交于點A1,得∠A1;∠A1BC和∠A1CD的平分線交于點A2,得∠A2A2015BC和∠A20l5CD的平分線交于點A2016,則∠A2016=__

查看答案和解析>>

同步練習冊答案