如圖,在□ABCD中,EF∥BD,分別交BC、CD于點(diǎn)P、Q,分別交AB、AD 的延長(zhǎng)線于點(diǎn)E、F,BE=BP.

(1)若∠E=70度,求∠F的度數(shù).
(2)求證:△ABD是等腰三角形.
(1)70度;(2)由(1)得∠E=∠F,由EF∥BD可得∠E=∠ABD,∠F=∠ADB,即可證得結(jié)論.

試題分析:(1)由BE=BP可得∠E=∠BPE,再結(jié)合平行四邊形的性質(zhì)求解即可;
(2)由(1)得∠E=∠F,由EF∥BD可得∠E=∠ABD,∠F=∠ADB,即可證得結(jié)論.
(1)∵BE=BP
∴∠E=∠BPE=70°
∵□ABCD
∴AD∥BC
∴∠F=∠BPE=70°;
(2)由(1)得∠E=∠F
又∵EF∥BD
∴∠E=∠ABD,∠F=∠ADB
∴∠ABD=∠ADB
△ABD是等腰三角形
點(diǎn)評(píng):平行四邊形的判定和性質(zhì)是初中數(shù)學(xué)的重點(diǎn),貫穿于整個(gè)初中數(shù)學(xué)的學(xué)習(xí),是中考常見題,一般難度不大,需熟練掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直角三角形ABC的兩直角邊BC=12,AC=16,則△ABC的斜邊AB上的高CD的長(zhǎng)是(  )。
A.20B.10C.9.6D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,將三角尺的直角頂點(diǎn)放在直線a上, a∥b,∠1=50°,∠2=60°,則∠3的度數(shù)為(  )
A.50°B.60°C. 70°D.80°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)P是菱形ABCD對(duì)角線BD上一點(diǎn),連接CP并延長(zhǎng)交AD于點(diǎn)E,交BA的延長(zhǎng)線于點(diǎn)F.

(1)求證:∠DCP=∠DAP;
(2)若AB=2,DP∶PB=1∶2,且PA⊥BF,求對(duì)角線BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,下列各式正確的是(     )
A.∠A>∠2>∠1 B.∠1>∠2>∠A
C.∠2>∠1>∠AD.∠1>∠A>∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖AD⊥BD,AE平分∠BAC,∠ACD=70°,∠B=30°.則∠DAE的度數(shù)為_____________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,⊿ABC中,∠A = 30°,∠B = 70°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,則∠CDF =         度。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面直角坐標(biāo)系中,直線y=-x+8分別交x軸、y軸于點(diǎn)B、點(diǎn)A,點(diǎn)D從點(diǎn)A出發(fā)沿射線AB方向以每秒1個(gè)單位長(zhǎng)的速度勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)B出發(fā)沿射線BC方向以每秒個(gè)單位長(zhǎng)的速度勻速運(yùn)動(dòng).設(shè)點(diǎn)D、E運(yùn)動(dòng)的時(shí)間是t秒(t>0).過點(diǎn)D作DF⊥AO于點(diǎn)F,連接DE、EF.

(1)當(dāng)t為何值時(shí),△BDE與△BAO相似;
(2)寫出以點(diǎn)D、F、E、O為頂點(diǎn)的四邊形面積s與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系;
(3)是否存在這樣一個(gè)時(shí)刻,此時(shí)以點(diǎn)D、F、E、B為頂點(diǎn)的四邊形是菱形,如果存在,求出相應(yīng)的t的值;如果不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如果一個(gè)正多邊形的每個(gè)外角為36°,那么這個(gè)正多邊形的邊數(shù)是
A.12B.10C.9D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案