【題目】元旦假期,小明一家游覽倉(cāng)圣公園,公園內(nèi)有一座假山,假山上有一條石階小路,其中有兩段臺(tái)階的高度如圖所示(圖中的數(shù)字表示每一級(jí)臺(tái)階的高度,單位:cm).請(qǐng)你運(yùn)用所學(xué)習(xí)的統(tǒng)計(jì)知識(shí),解決以下問題:
(1)把每一級(jí)臺(tái)階的高度作為數(shù)據(jù),請(qǐng)從統(tǒng)計(jì)知識(shí)方面(平均數(shù)、中位數(shù))說一下甲、乙兩段臺(tái)階有哪些相同點(diǎn)和不同點(diǎn)?
(2)甲、乙兩段臺(tái)階哪段上行走會(huì)比較舒服?你能用所學(xué)知識(shí)說明嗎?
(3)為方便游客行走,需要重新整修上山的小路.對(duì)于這兩段臺(tái)階路,在臺(tái)階數(shù)不變的情況下,請(qǐng)你提出合理的整修建議.
【答案】(1)見解析;(2)乙臺(tái)階上行走會(huì)比較舒服;(3)見解析
【解析】試題分析:(1)利用平均數(shù)計(jì)算公式、中位數(shù)解答即可;
(2)先求出方差,根據(jù)方差的大小再確定哪段臺(tái)階路走起來更舒服;
(3)要使臺(tái)階路走起來更舒服,就得讓方差變得更小.
解:(1)將甲、乙兩臺(tái)階高度值從小到大排列如下:
甲:10,12,15,17,18,18;乙:14,14,15,15,16,16.
甲的中位數(shù)是(15+17)÷2=16,
平均數(shù)是×(10+12+15+17+18+18)=15;
乙的中位數(shù)是(15+15)÷2=15,
平均數(shù)是×(14+14+15+15+16+16)=15.
故兩臺(tái)階高度的平均數(shù)相同,中位數(shù)不同.
(2)s=×[(10-15)2+(12-15)2+(15-15)2+(17-15)2+(18-15)2+(18-15)2]=,
s=×[(14-15)2+(14-15)2+(15-15)2+(15-15)2+(16-15)2+(16-15)2]=.
∵s<s,
∴乙臺(tái)階上行走會(huì)比較舒服.
(3)修改如下:
為使游客在兩段臺(tái)階上行走比較舒服,需使方差盡可能小,最理想應(yīng)為0,同時(shí)不能改變臺(tái)階數(shù)量和臺(tái)階總體高度,故可使每個(gè)臺(tái)階高度均為15 cm(原平均數(shù)),使得方差為0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司在兩倉(cāng)庫分別有機(jī)器16臺(tái)和12臺(tái),現(xiàn)要運(yùn)往甲、乙兩地,其中甲地需要15臺(tái),乙地需要13臺(tái),已知兩地倉(cāng)庫運(yùn)往甲,乙兩地機(jī)器的費(fèi)用如下面的左表所示.
設(shè)從A倉(cāng)庫調(diào)x臺(tái)機(jī)器去甲地,請(qǐng)用含x的代數(shù)式補(bǔ)全下面的右表;
機(jī)器調(diào)運(yùn)費(fèi)用表機(jī)器調(diào)運(yùn)方案表
出發(fā)地 目的地運(yùn)費(fèi)臺(tái)元 | A | B | 出發(fā)地 目的地機(jī)器臺(tái) | A | B | 合計(jì) | |
甲 | 500 | 300 | 甲地 | x | 15 | ||
乙 | 400 | 600 | 乙地 | 13 | |||
合計(jì) | 16 | 12 | 28 |
設(shè)總運(yùn)費(fèi)為y元,求y與x之間的函數(shù)解析式,并寫出自變量x的取值范圍;
由機(jī)器調(diào)運(yùn)方案表可知共有n種調(diào)運(yùn)方案,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】杭州休博會(huì)期間,嘉年華游樂場(chǎng)投資150萬元引進(jìn)一項(xiàng)大型游樂設(shè)施.若不計(jì)維修保養(yǎng)費(fèi)用,預(yù)計(jì)開放后每月可創(chuàng)收33萬元.而該游樂設(shè)施開放后,從第1個(gè)月到第x個(gè)月的維修保養(yǎng)費(fèi)用累計(jì)為y(萬元),且y=ax2+bx;若將創(chuàng)收扣除投資和維修保養(yǎng)費(fèi)用稱為游樂場(chǎng)的純收益g(萬元),g也是關(guān)于x的二次函數(shù);
(1)若維修保養(yǎng)費(fèi)用第1個(gè)月為2萬元,第2個(gè)月為4萬元.求y關(guān)于x的解析式;
(2)求純收益g關(guān)于x的解析式;
(3)問設(shè)施開放幾個(gè)月后,游樂場(chǎng)的純收益達(dá)到最大;幾個(gè)月后,能收回投資?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫弧交AD于點(diǎn)F,再分別以點(diǎn)B,F為圓心,大于BF的相同長(zhǎng)為半徑畫弧,兩弧交于點(diǎn)P;連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF,則所得四邊形ABEF是菱形.
(1)根據(jù)以上尺規(guī)作圖的過程,求證:四邊形ABEF是菱形;
(2)若菱形ABEF的周長(zhǎng)為16,AE=,求∠C的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是二次函數(shù) y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③ax2+bx+c=0的兩根分別為-3和1;④a-2b+c>0.其中正確的命題是 . (只要求填寫正確命題的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于二次函數(shù)y=x2-2mx-3 , 有下列說法:
①它的圖象與x軸有兩個(gè)公共點(diǎn);
②如果當(dāng)x≤1時(shí)y隨x的增大而減小,則m=1;
③如果將它的圖象向左平移3個(gè)單位后過原點(diǎn),則m=-1;
④如果當(dāng)x=4時(shí)的函數(shù)值與x=2008時(shí)的函數(shù)值相等,則當(dāng)x=2012時(shí)的函數(shù)值為-3 .
其中正確的說法是 . (把你認(rèn)為正確說法的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在精準(zhǔn)扶貧中,某村的李師傅在縣政府的扶持下,去年下半年,他對(duì)家里的3個(gè)溫室大棚進(jìn)行修整改造,然后,1個(gè)大棚種植香瓜,另外2個(gè)大棚種植甜瓜,今年上半年喜獲豐收,現(xiàn)在他家的甜瓜和香瓜已全部售完,他高興地說:“我的日子終于好了”.
最近,李師傅在扶貧工作者的指導(dǎo)下,計(jì)劃在農(nóng)業(yè)合作社承包5個(gè)大棚,以后就用8個(gè)大棚繼續(xù)種植香瓜和甜瓜,他根據(jù)種植經(jīng)驗(yàn)及今年上半年的市場(chǎng)情況,打算下半年種植時(shí),兩個(gè)品種同時(shí)種,一個(gè)大棚只種一個(gè)品種的瓜,并預(yù)測(cè)明年兩種瓜的產(chǎn)量、銷售價(jià)格及成本如下:
現(xiàn)假設(shè)李師傅今年下半年香瓜種植的大棚數(shù)為x個(gè),明年上半年8個(gè)大棚中所產(chǎn)的瓜全部售完后,獲得的利潤(rùn)為y元.
根據(jù)以上提供的信息,請(qǐng)你解答下列問題:
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)求出李師傅種植的8個(gè)大棚中,香瓜至少種植幾個(gè)大棚?才能使獲得的利潤(rùn)不低于10萬元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)P(x,y)在第一象限內(nèi),且x+y=6,點(diǎn)A的坐標(biāo)為(4,0).設(shè)△OPA的面積為S,則下列圖象中,能正確反映面積S與x之間的函數(shù)關(guān)系式的圖象是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC>∠ADC,且∠BAD 的平分線 AE 與∠BCD 的平分線 CE 交于點(diǎn) E,則∠AEC與∠ADC、∠ABC 之間存在的等量關(guān)系是( )
A. ∠AEC=∠ABC﹣2∠ADC B. ∠AEC=
C. ∠AEC= ∠ABC﹣∠ADC D. ∠AEC=
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com