【題目】瑤寨中學食堂為學生提供了四種價格的午餐供其選擇,這四種價格分別是:A.3元,B.4元,C.5元,D.6元.為了了解學生對四種午餐的購買情況,學校隨機抽樣調(diào)查了甲、乙兩班學生某天購買四種午餐的情況,依據(jù)統(tǒng)計數(shù)據(jù)制成如下的統(tǒng)計圖表:
甲、乙兩班學生購買午餐的情況統(tǒng)計表
品種 | A | B | C | D |
甲 | 6 | 22 | 16 | 6 |
乙 | ? | 13 | 25 | 3 |
(1)求乙班學生人數(shù);
(2)求乙班購買午餐費用的中位數(shù);
(3)已知甲、乙兩班購買午餐費用的平均數(shù)為4.44元,從平均數(shù)和眾數(shù)的角度解答,哪個班購買的午餐價格較高?
(4)從這次接受調(diào)查的學生中,隨機抽查一人,恰好是購買C種午餐的學生的概率是多少?
【答案】
(1)
解:∵乙班學生購買C午餐的人數(shù)為25人,占百分比為:50%,
∴乙班學生人數(shù)為:25÷50%=50(人)
(2)
解:∵乙班學生人數(shù)共50人,
∴乙班購買午餐費用的中位數(shù)應(yīng)在25與26人的平均數(shù),
∴乙班購買午餐費用的中位數(shù)是:購買C午餐:5元
(3)
解:∵甲、乙兩班購買午餐費用的平均數(shù)為4.44元,甲班購買午餐費用的眾數(shù)是:購買B午餐:4元;乙班購買午餐費用的眾數(shù)是:購買C午餐:5元;
∴乙班購買的午餐價格較高
(4)
解:恰好是購買C種午餐的學生的概率是: = .
【解析】(1)由乙班學生購買C午餐的人數(shù)為25人,占百分比為:50%,即可求得乙班學生人數(shù);(2)由乙班學生人數(shù)共50人,即可求得乙班購買午餐費用的中位數(shù);(3)由甲、乙兩班購買午餐費用的平均數(shù)為4.44元,可得甲班購買午餐費用的眾數(shù)是:購買B午餐:4元;乙班購買午餐費用的眾數(shù)是:購買C午餐:5元;即可求得答案;(4)直接利用概率公式求解即可求得答案.
【考點精析】本題主要考查了統(tǒng)計表和扇形統(tǒng)計圖的相關(guān)知識點,需要掌握制作統(tǒng)計表的步驟:(1)收集整理數(shù)據(jù).(2)確定統(tǒng)計表的格式和欄目數(shù)量,根據(jù)紙張大小制成表格.(3)填寫欄目、各項目名稱及數(shù)據(jù).(4)計算總計和合計并填入表中,一般總計放在橫欄最左格,合計放在豎欄最上格.(5)寫好表格名稱并標明制表時間;能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC和BD相交于點O,過O作EF⊥AC,交AD于E,交BC于F,連接AF、CE.
(1)求證:四邊形AECF是菱形
(2)若AB=3,BC=4,則菱形AECF的周長?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,將小旗ACDB放于平面直角坐標系中,得到各頂點的坐標為A(﹣6,12),B(﹣6,0),C(0,6),D(﹣6,6).以點B為旋轉(zhuǎn)中心,在平面直角坐標系內(nèi)將小旗順時針旋轉(zhuǎn)90°.
(1)畫出旋轉(zhuǎn)后的小旗A′C′D′B′;
(2)寫出點A′,C′,D′的坐標;
(3)求出線段BA旋轉(zhuǎn)到B′A′時所掃過的扇形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲口袋中裝有兩個相同的小球,它們的標號分別為2和5,乙口袋中裝有兩個相同的小球,它們的標號分別為4和9,丙口袋中裝有三個相同的小球,它們的標號分別為1,6,7.從這3個口袋中各隨機取出一個小球.
(1)用樹形圖表示所有可能出現(xiàn)的結(jié)果;
(2)若用取出的三個小球的標號分別表示三條線段的長,求這些線段能構(gòu)成三角形的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C為⊙O外一點,過點C作⊙O的切線,切點為B,連結(jié)AC交⊙O于D,∠C=38°.點E在AB右側(cè)的半圓上運動(不與A、B重合),則∠AED的大小是( )
A.19°
B.38°
C.52°
D.76°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】函數(shù)y=x的圖象與函數(shù)y= 的圖象在第一象限內(nèi)交于點B,點C是函數(shù)y= 在第一象限圖象上的一個動點,當△OBC的面積為3時,點C的橫坐標是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線的頂點為(0,4)且與x軸交于(﹣2,0),(2,0).
(1)直接寫出拋物線解析式;
(2)如圖,將拋物線向右平移k個單位,設(shè)平移后拋物線的頂點為D,與x軸的交點為A、B,與原拋物線的交點為P.
①當直線OD與以AB為直徑的圓相切于E時,求此時k的值;
②是否存在這樣的k值,使得點O、P、D三點恰好在同一條直線上?若存在,求出k值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,正方形ABCD中,E是CD上一點,F(xiàn)在CB的延長線上,且DE=BF.
(1)求證:△ADE≌△ABF;
(2)問:將△ADE順時針旋轉(zhuǎn)多少度后與△ABF重合,旋轉(zhuǎn)中心是什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD中,AB=2,∠A=120°,點P,Q,K分別為線段BC,CD,BD上的任意一點,則PK+QK的最小值為( )
A.1
B.
C.2
D. +1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com