【題目】如圖,在等腰梯形ABCD中,AD∥BC,AB=DC,AC⊥BD.若AD=4,BC=6,則梯形ABCD的面積是

【答案】25
【解析】解:過點D作DE∥AC,交BC的延長線于點E,
∵AD∥BC,
∴四邊形ACED是平行四邊形,
∴AC=DE,CE=AD=4,
∴BE=BC+CE=6+4=10,
∵AC⊥BD,
∴DE⊥BD,
∵四邊形ABCD是等腰梯形,
∴AC=BD,
∴BD=DE,
∴BD=DE= =5 ,
∴S梯形ABCD= ×AC×BD=25.
所以答案是:25.
【考點精析】本題主要考查了等腰三角形的性質(zhì)和等腰梯形的性質(zhì)的相關(guān)知識點,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);等腰梯形的兩腰相等;同一底上的兩個角相等;兩條對角線相等才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了從甲、乙兩名射擊運動員中選拔一名參加比賽,對這兩名運動員進(jìn)行測試,他們10次射擊命中的環(huán)數(shù)如下:

7

9

8

6

10

7

9

8

6

10

7

8

9

8

8

6

8

9

7

10

根據(jù)測試成績,你認(rèn)為選擇哪一名運動員參賽更好?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2k+1)x+k2﹣2=0的兩根為x1和x2 , 且(x1﹣2)(x1﹣x2)=0,則k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中國“蛟龍”號深潛器目前最大深潛極限為7062.68米.某天該深潛器在海面下1800米的A點處作業(yè)(如圖),測得正前方海底沉船C的俯角為45°,該深潛器在同一深度向正前方直線航行2000米到B點,此時測得海底沉船C的俯角為60°.

(1)沉船C是否在“蛟龍”號深潛極限范圍內(nèi)?并說明理由;
(2)由于海流原因,“蛟龍”號需在B點處馬上上浮,若平均垂直上浮速度為2000米/時,求“蛟龍”號上浮回到海面的時間.(參考數(shù)據(jù): ≈1.414, ≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四根長度一定的木條,其中AB=6cm,CD=15cm,將這四根木條用小釘絞合在一起,構(gòu)成一個四邊形ABCD(在A、B、C、D四點處是可以活動的).現(xiàn)固定AB邊不動,轉(zhuǎn)動這個四邊形,使它的形狀改變,在轉(zhuǎn)動的過程中有以下兩個特殊位置.

位置一:當(dāng)點DBA的延長線上時,點C在線段AD上(如圖2);

位置二:當(dāng)點CAB的延長線上時,∠C=90°.

(1)在圖2中,若設(shè)BC的長為,請用含的代數(shù)式表示AD的長;

(2)在圖3中畫出位置二的示意圖

(3)利用圖2、圖3求圖1的四邊形ABCDBC、AD邊的長度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點E(與點B、C不重合)是BC邊上一點,將線段EA繞點E順時針旋轉(zhuǎn)90°到EF,過點F作BC的垂線交BC的延長線于點G,連接CF.

(1)求證:ABE≌△EGF;

(2)若AB=2,S△ABE=2S△ECF,求BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于點D,PE⊥OB于點E.如果點M是OP的中點,則DM的長是( 。

A. 2 B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直線L上依次擺放著七個正方形,已知斜放置的三個正方形的面積分別為1、2、3,正放置的四個正方形的面積依次是S1、S2、S3、S4S1+2S2+2S3+S4=(

A. 5 B. 4 C. 6 D. 10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在踐行“社會主義核心價值觀”演講比賽中,對名列前20名的選手的綜合分?jǐn)?shù)m進(jìn)行分組統(tǒng)計,結(jié)果如表所示:

組號

分組

頻數(shù)

6≤m<7

2

7≤m<8

7

8≤m<9

a

9≤m≤10

2


(1)求a的值;
(2)若用扇形圖來描述,求分?jǐn)?shù)在8≤m<9內(nèi)所對應(yīng)的扇形圖的圓心角大小;
(3)將在第一組內(nèi)的兩名選手記為:A1、A2 , 在第四組內(nèi)的兩名選手記為:B1、B2 , 從第一組和第四組中隨機(jī)選取2名選手進(jìn)行調(diào)研座談,求第一組至少有1名選手被選中的概率(用樹狀圖或列表法列出所有可能結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案