【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,它與x軸的兩個交點分別為(﹣1,0),(3,0).對于下列命題:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正確的有( )
A.3個 B.2個 C.1個 D.0個
【答案】B
【解析】
試題分析:首先根據(jù)二次函數(shù)圖象開口方向可得a>0,根據(jù)圖象與y軸交點可得c<0,再根據(jù)二次函數(shù)的對稱軸x=﹣,結(jié)合圖象與x軸的交點可得對稱軸為x=1,結(jié)合對稱軸公式可判斷出①的正誤;根據(jù)對稱軸公式結(jié)合a的取值可判定出b<0,根據(jù)a、b、c的正負即可判斷出②的正誤;利用a﹣b+c=0,求出a﹣2b+4c<0,再利用當(dāng)x=4時,y>0,則16a+4b+c>0,由①知,b=﹣2a,得出8a+c>0.
解:根據(jù)圖象可得:a>0,c<0,
對稱軸:x=﹣>0,
①∵它與x軸的兩個交點分別為(﹣1,0),(3,0),
∴對稱軸是x=1,
∴﹣=1,
∴b+2a=0,
故①錯誤;
②∵a>0,
∴b<0,
∵c<0,
∴abc>0,故②錯誤;
③∵a﹣b+c=0,
∴c=b﹣a,
∴a﹣2b+4c=a﹣2b+4(b﹣a)=2b﹣3a,
又由①得b=﹣2a,
∴a﹣2b+4c=﹣7a<0,
故此選項正確;
④根據(jù)圖示知,當(dāng)x=4時,y>0,
∴16a+4b+c>0,
由①知,b=﹣2a,
∴8a+c>0;
故④正確;
故正確為:③④兩個.
故選:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù):5,15,75,45,25,75,45,35,45,35,那么40是這一組數(shù)據(jù)的( 。
A. 平均數(shù)但不是中位數(shù) B. 平均數(shù)也是中位數(shù)
C. 眾數(shù) D. 中位數(shù)但不是平均數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點E、F在直線AB上,點G在線段CD上,ED與FG交于點H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說明理由;
(3)若∠EHF=100°,∠D=30°,求∠AEM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】方程x(x﹣2)=3x的解為( 。
A. x=5 B. x1=0,x2=5 C. x1=2,x2=0 D. x1=0,x2=﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列計算正確的是( 。
A. (x+y)2=x2+y2 B. (x﹣y)2=x2﹣2xy﹣y2
C. x(x﹣1)=x2﹣1 D. (x+1)(x﹣1)=x2﹣1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,∠DAC的平分線交DC于點E,若點P,Q分別是AD和AE上的動點,則DQ+PQ的最小值是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com