【題目】在地表以下不太深的地方,溫度y(℃)與所處的深度x(km)之間的關(guān)系可以近似用關(guān)系式y=35x+20表示,這個(gè)關(guān)系式符合的數(shù)學(xué)模型是( )
A. 正比例函數(shù) B. 反比例函數(shù) C. 二次函數(shù) D. 一次函數(shù)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分8分)某藥品研究所開發(fā)一種抗菌新藥,經(jīng)多年動(dòng)物實(shí)驗(yàn),首次用于臨床人體實(shí)驗(yàn).測(cè)得成人服藥后血液中藥物深度(微克/毫升)與服藥時(shí)間小時(shí)之間的函數(shù)關(guān)系如圖所示(當(dāng)時(shí),與成反比).
(1)根據(jù)圖象分別求出血液中藥物濃度上升和下降階段與之間的函數(shù)關(guān)系式;
(2)問(wèn)血液中藥物濃度不低于4微克/毫升的持續(xù)時(shí)間為多少小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分8分)
已知,如圖,BE平分∠ABC,CE平分∠BCD,且∠1+∠2=90,求證:AB∥CD.
證明:∵BE平分∠ABC. ( )
∴ . ( )
同理: .
∴∠ABC+∠BCD=2(∠1+∠2). ( )
∵ . ( )
∴ . ( )
∴AB∥CD. ( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為6的正方形ABCD中,E是邊CD的中點(diǎn),將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交BC于點(diǎn)G,連接AG,則BG= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】【問(wèn)題情境】
如圖1,四邊形ABCD是正方形,M是BC邊上的一點(diǎn),E是CD邊的中點(diǎn),AE平分∠DAM.
【探究展示】
(1)證明:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.
【拓展延伸】
(3)若四邊形ABCD是長(zhǎng)與寬不相等的矩形,其他條件不變,如圖2,探究展示(1)、(2)中的結(jié)論是否成立?請(qǐng)分別作出判斷,不需要證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】AB∥CD,直線a交AB、CD分別于點(diǎn)E、F,點(diǎn)M在EF上,P是直線CD上的一個(gè)動(dòng)點(diǎn),(點(diǎn)P不與F重合)
(1)當(dāng)點(diǎn)P在射線FC上移動(dòng)時(shí),∠FMP+∠FPM =∠AEF成立嗎?請(qǐng)說(shuō)明理由。
(2)當(dāng)點(diǎn)P在射線FD上移動(dòng)時(shí),∠FMP+∠FPM與∠AEF有什么關(guān)系?并說(shuō)明你的理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn)p(5.﹣3)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)是( )
A.(3,﹣5)
B.(﹣5,﹣3)
C.(﹣5,3)
D.(﹣3,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠C=90°,沿過(guò)B點(diǎn)的一條直線BE折疊這個(gè)三角形, 使C點(diǎn)與AB邊上的一點(diǎn)D重合.
(1)當(dāng)∠A滿足什么條件時(shí),點(diǎn)D恰為AB的中點(diǎn)?寫出一個(gè)你認(rèn)為適當(dāng)?shù)臈l件,并利用此條件證明D為AB的中點(diǎn);
(2)在(1)的條件下,若DE=1,求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com