【題目】1)如圖,已知△ABC中,AB=2BC=4.畫(huà)出△ABC的高ADCE并求出的值.

2)在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為,點(diǎn)B坐標(biāo)為滿足

①若沒(méi)有平方根,判斷點(diǎn)A在第幾象限并說(shuō)明理由;

②若點(diǎn)A軸的距離是點(diǎn)B軸距離的3倍,求點(diǎn)B的坐標(biāo).

【答案】1)作圖見(jiàn)詳解,;(2)①點(diǎn)A在第二象限,31)或(6,﹣2).

【解析】

1)利用鈍角三角形邊上的高線作法,延長(zhǎng)各邊作出即可;利用三角形面積求法公式得出即可.

2)①根據(jù)平方根的意義得到a0,然后根據(jù)各象限點(diǎn)的坐標(biāo)特征可判斷點(diǎn)A在第二象限;②先利用方程組,用a表示b、cbac4a,則B點(diǎn)坐標(biāo)為(a,4a),再利用點(diǎn)Ax軸的距離是點(diǎn)Bx軸距離的3倍得到|a|3|4a|,則a34a)或a=﹣34a),分別解方程求出a的值,然后計(jì)算出c的值,于是可寫(xiě)出B點(diǎn)坐標(biāo).

解:(1)如圖所示,AD、CE即為所求:

SABC×AD×BCAB×CE

2點(diǎn)A在第二象限,

理由:∵a沒(méi)有平方根

a0、﹣a0

∴點(diǎn)A在第二象限;

解方程組

a表示b、c得:bac4a,

B點(diǎn)坐標(biāo)為(a,4a),

∵點(diǎn)Ax軸的距離是點(diǎn)Bx軸距離的3倍,

|a|3|4a|

當(dāng)a34a),解得a3,則c431,此時(shí)B點(diǎn)坐標(biāo)為(3,1);

當(dāng)a=﹣34a),解得a6,則c46=﹣2,此時(shí)B點(diǎn)坐標(biāo)為(6,﹣2);

綜上所述,B點(diǎn)坐標(biāo)為(31)或(6,﹣2).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,將正方形OABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)45°后得到正方形OA1B1C1,依此方式,繞點(diǎn)O連續(xù)旋轉(zhuǎn)2018次得到正方形OA2018B2018C2018,如果點(diǎn)A的坐標(biāo)為(1,0),那么點(diǎn)B2018的坐標(biāo)為( 。

A. (1,1) B. (0, C. D. (﹣1,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,ABAC10,BC16.點(diǎn)D在邊BC上,且點(diǎn)D到邊AB和邊AC的距離相等.

1)用直尺和圓規(guī)作出點(diǎn)D(不寫(xiě)作法,保留作圖痕跡,在圖上標(biāo)注出點(diǎn)D);

2)求點(diǎn)D到邊AB的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中, ,以為直徑的邊于點(diǎn),連接,過(guò)的垂線,交邊于點(diǎn),交邊的延長(zhǎng)線于點(diǎn)

1)求證:的切線;

2)若,,求劣弧的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】國(guó)家為了實(shí)現(xiàn)2020年全面脫貧目標(biāo),實(shí)施“精準(zhǔn)扶貧”戰(zhàn)略,采取異地搬遷,產(chǎn)業(yè)扶持等措施.使貧困戶的生活條件得到改善,生活質(zhì)量明顯提高.某旗縣為了全面了解貧困縣對(duì)扶貧工作的滿意度情況,進(jìn)行隨機(jī)抽樣調(diào)查,分為四個(gè)類(lèi)別:A.非常滿意;B.滿意;C.基本滿意;D.不滿意.依據(jù)調(diào)查數(shù)據(jù)繪制成圖1和圖2的統(tǒng)計(jì)圖(不完整).

根據(jù)以上信息,解答下列問(wèn)題:

(1)將圖1補(bǔ)充完整;

(2)通過(guò)分析,貧困戶對(duì)扶貧工作的滿意度(A、B、C類(lèi)視為滿意)是  

(3)市扶貧辦從該旗縣甲鄉(xiāng)鎮(zhèn)3戶、乙鄉(xiāng)鎮(zhèn)2戶共5戶貧困戶中,隨機(jī)抽取兩戶進(jìn)行滿意度回訪,求這兩戶貧困戶恰好都是同一鄉(xiāng)鎮(zhèn)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系,O為坐標(biāo)原點(diǎn),點(diǎn)A(﹣1,0),點(diǎn)B(0,).

(1)求BAO的度數(shù);

(2)如圖1,將AOB繞點(diǎn)O順時(shí)針得A′OB′,當(dāng)A′恰好落在AB邊上時(shí),設(shè)AB′O的面積為S1,BA′O的面積為S2,S1與S2有何關(guān)系?為什么?

(3)若將AOB繞點(diǎn)O順時(shí)針旋轉(zhuǎn)到如圖2所示的位置,S1與S2的關(guān)系發(fā)生變化了嗎?證明你的判斷.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y2mx2+5mx12mm為參數(shù),且m0)的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C,點(diǎn)A的坐標(biāo)為(﹣40).

1)求直線AC的解析式(用含m的式子表示).

2)若m=﹣,連接BC,判斷∠CAB和∠CBA的數(shù)量關(guān)系,并說(shuō)明理由.

3)在(2)的條件下,設(shè)點(diǎn)MAC上方的拋物線上一動(dòng)點(diǎn)(與點(diǎn)A,C不重合),以M為圓心的圓與直線AC相切,求⊙M面積的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtACB中,∠C=90°,AC=3,BC=4,OBC的中點(diǎn),到點(diǎn)O的距離等于BC的所有點(diǎn)組成的圖形記為G,圖形GAB交于點(diǎn)D

1)補(bǔ)全圖形并求線段AD的長(zhǎng);

2)點(diǎn)E是線段AC上的一點(diǎn),當(dāng)點(diǎn)E在什么位置時(shí),直線ED 圖形G有且只有一個(gè)交點(diǎn)?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)的圖像如圖所示,其對(duì)稱軸為,與軸負(fù)半軸的交點(diǎn)為 ,則下列結(jié)論正確的是( )

A.B.一元二次方程無(wú)實(shí)根

C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案