【題目】如圖,在矩形ABCD中,M、N分別是AD、BC的中點,P、Q分別是BM、DN的中點.

(1)求證:△MBA≌△NDC;

(2)四邊形MPNQ是什么樣的特殊四邊形?請說明理由.

【答案】(1)證明見解析(2)四邊形MPNQ是菱形.

【解析】證明:(1四邊形ABCD是矩形,

∵AB=CD,AD=BC∠A=∠C=90°,

在矩形ABCD中,M、N分別是ADBC的中點,

∴AM=ADCN=BC,

∴AM=CN,

△MAB≌△NDC,

,

∴△MAB≌△NDC

2)四邊形MPNQ是菱形,

理由如下:連接AN,

易證:△ABN≌△BAM,

∴AN=BM

∵△MAB≌△NDC,

∴BM=DN,

∵P、Q分別是BMDN的中點,

∴PM=NQ,

∵DM=BN,DQ=BP∠MDQ=∠NBP,

∴△MQD≌△NPB

四邊形MPNQ是平行四邊形,

∵MAB中點,QDN中點,

∴MQ=AN

∴MQ=BM,

∴MP=BM,

∴MP=MQ

四邊形MQNP是菱形.

1)根據(jù)矩形的性質和中點的定義,利用SAS判定△MBA≌△NDC;

2)四邊形MPNQ是菱形,連接AN,有(1)可得到BM=CN,再有中點得到PM=NQ,再通過證明△MQD≌△NPB得到MQ=PN,從而證明四邊形MPNQ是平行四邊形,利用三角形中位線的性質可得:MP=MQ,進而證明四邊形MQNP是菱形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】把一張對邊互相平行的紙條,折成如圖所示,EF是折痕,若EFB=32°,則下列結論正確的有( )

(1)CEF=32°;(2)AEC=148°;

(3)BGE=64°; (4)BFD=116°.

(A)1個 (B)2個 (C)3個 (D)4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2013年3月28日是全國中小學生安全教育日,某學校為加強學生的安全意識,組織了全校1500名學生參加安全知識競賽,從中抽取了部分學生成績(得分取正整數(shù),滿分為100分)進行統(tǒng)計,請根據(jù)尚未完成的頻率分布表和頻數(shù)分布直方圖,解答下列問題:

頻率分布表 頻數(shù)分布直方圖

(1)這次抽取了名學生的競賽成績進行統(tǒng)計,其中: ,

(2)補全頻數(shù)分布直方圖;

(3)若成績在70分以下(含70分)的學生為安全意識不強,有待進一步加強安全教育,則該校安全意識不強的學生約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線的解析式為y=x+4,與x軸y軸分別交于A,B兩點;直線x軸交于點C(2,0)與y軸交于點D(0, ,兩直線交于點P.

(1)求點A,B的坐標及直線的解析式;

(2)求證:△AOB≌△APC;

(3)若將直線向右平移m個單位,與x軸,y軸分別交于點、,使得以點A、B、、為頂點的圖形是軸對稱圖形,求m的值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某職業(yè)高中機電班共有學生42人,其中男生人數(shù)比女生人數(shù)的2倍少3人.

(1)該班男生和女生各有多少人?

(2)某工廠決定到該班招錄30名學生,經(jīng)測試,該班男、女生每天能加工的零件數(shù)分別為50個和45個,為保證他們每天加工的零件總數(shù)不少于1460個,那么至少要招錄多少名男學生?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】八年級某班為了獎勵學習進步的學生,購買了單價為3元的筆記本和單價為5元的鋼筆兩種獎品,共花費35元,一共有 種購買方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長為1個單位長度,已知ABC的頂點A、C的坐標分別為(﹣4,4)、(﹣1,2),點B坐標為(﹣2,1).

(1)請在圖中正確地作出平面直角坐標系,畫出點B,并連接AB、BC;

(2)將ABC沿x軸正方向平移5個單位長度后,再沿x軸翻折得到DEF,畫出DEF;

(3)點P(m,n)是ABC的邊上的一點,經(jīng)過(2)中的變化后得到對應點Q,直接寫出點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若點P3a2,2a+7)在第二、四象限的角平分線上,則點P的坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若(x1,y1)·(x2,y2)=x1x2+y1y2,則(4,5)·(6,8)=________.

查看答案和解析>>

同步練習冊答案