【題目】如圖,將一副三角板中的兩塊直角三角尺的直角頂點O按如圖方式疊放在一起.
(1)判斷大小關(guān)系:∠AOD______∠BOC(填>、=、<等)
(2)若 ∠BOD=35°,則∠AOC= ;若∠AOC=135°,則∠BOD= ;
(3)猜想 ∠AOC與∠BOD的數(shù)量關(guān)系,并說明理由.
【答案】(1)、=;(2)、145°、45°;(3)猜想:∠AOC+∠BOD=180°,理由見解析.
【解析】
(1)由于是兩直角三角形板重疊,∠AOD=90°-∠BOD,∠BOC=90°-∠BOD,即可判斷∠AOD=∠BOC;
(2)由于是兩直角三角形板重疊,根據(jù)∠AOC=∠AOB+∠COD-∠BOD可分別計算出∠AOC、∠BOD的度數(shù);
(3)由∠AOD+∠BOD+∠BOD+∠BOC=180°且∠AOD+∠BOD+∠BOC=∠AOC可知兩角互補.
(1) ∵∠AOB=∠COD=90°,
∴∠AOD=90°-∠BOD,∠BOC=90°-∠BOD,
∴∠AOD=∠BOC;
(2)∵∠AOB=∠COD=90°,∠BOD=35°,
∴∠AOC=∠AOB+∠COD∠BOD=90°+90°35°=145°;
∵∠AOB=∠COD=90°,∠AOC=135°,
∴∠BOD=∠AOB+∠COD∠AOC=90°+90°135°=45°;
(3)、猜想:∠AOC+∠BOD=180°
理由: 依題意∠AOB=∠DOC=90°
∴∠AOC+∠BOD=(∠AOB+∠BOC)+∠BOD
=∠AOB+(∠BOC+∠BOD)
=∠AOB+∠DOC
=90°+90°
=180°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校舉行了“文明在我身邊”攝影比賽.已知每幅參賽作品成績記為x分(60≤x<100).校方從600幅參賽作品中隨機抽取了部分參賽作品,統(tǒng)計了它們的成績,并繪制了如下不完整的統(tǒng)計圖表.
分數(shù)段 | 頻數(shù) | 頻率 |
60≤x<70 | 18 | 0.36 |
70≤x<80 | 17 | c |
80≤x<90 | a | 0.24 |
90≤x<100 | b | 0.06 |
合計 | 1 |
根據(jù)以上信息解答下列問題:
(1)統(tǒng)計表中c的值為________;樣本成績的中位數(shù)落在分數(shù)段________中;
(2)補全頻數(shù)直方圖;
(3)若80分以上(含80分)的作品將被組織展評,試估計全校被展評的作品數(shù)量是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用正方形硬紙板做三棱柱盒子,每個盒子由3個矩形側(cè)面和2個正三角形底面組成。硬紙板以如圖兩種方式裁剪(裁剪后邊角料不再利用)
A方法:剪6個側(cè)面; B方法:剪4個側(cè)面和5個底面。
現(xiàn)有19張硬紙板,裁剪時張用A方法,其余用B方法。
(1)用的代數(shù)式分別表示裁剪出的側(cè)面和底面的個數(shù);
(2)若裁剪出的側(cè)面和底面恰好全部用完,問能做多少個盒子?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空,完成下列說理過程
如圖,點A,O,B在同一條直線上,OD,OE分別平分∠AOC和∠BOC.
(1)求∠DOE的度數(shù);
(2)如果∠COD=65°,求∠AOE的度數(shù).
解:(1)如圖,因為OD是∠AOC的平分線,
所以∠COD=∠AOC.
因為OE是∠BOC的平分線,
所以∠COE= .
所以∠DOE=∠COD+ =(∠AOC+∠BOC)=∠AOB= °.
(2)由(1)可知
∠BOE=∠COE= ﹣∠COD= °.
所以∠AOE= ﹣∠BOE= °.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,E、F是四邊形ABCD的對角線AC上的兩點,AF=CE,DF=BE,DF∥BE.
求證:(1)△AFD≌△CEB.(2)四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,G 為 BC 的中點,且 DG⊥BC,DE⊥AB 于 E,DF⊥AC 于 F, BE=CF.
(1)求證:AD 是∠BAC 的平分線;
(2)如果 AB=8,AC=6,求 AE 的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x>0)的圖象交于點P(n,2),與x軸交于點A(﹣4,0),與y軸交于點C,PB⊥x軸于點B,且AC=BC.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)反比例函數(shù)圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,求出點D的坐標;如果不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(3分)如圖,AD是△ABC的角平分線,DE⊥AC,垂足為E,BF∥AC交ED的延長線于點F,若BC恰好平分∠ABF,AE=2BF.給出下列四個結(jié)論:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】橫坐標和縱坐標都是整數(shù)的點叫作整點,函數(shù)y=的圖象上的整點的個數(shù)是( )
A. 3個 B. 4個 C. 6個 D. 8個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com